package power; import com.badlogic.gdx.math.MathUtils; import io.anuke.mindustry.world.Tile; import io.anuke.mindustry.world.blocks.power.PowerGenerator; import io.anuke.mindustry.world.blocks.power.PowerGraph; import io.anuke.mindustry.world.consumers.ConsumePower; import org.junit.jupiter.api.*; import static org.junit.jupiter.api.Assertions.assertEquals; import static org.junit.jupiter.api.Assertions.assertFalse; import static org.junit.jupiter.api.Assertions.assertTrue; import static org.junit.jupiter.api.DynamicTest.dynamicTest; /** * Tests code related to the power system in general, but not specific blocks. * All tests are run with a fixed delta of 0.5 so delta considerations can be tested as well. * Additionally, each PowerGraph::update() call will have its own thread frame, i.e. the method will never be called twice within the same frame. * Both of these constraints are handled by FakeThreadHandler within PowerTestFixture. * Any power amount (produced, consumed, buffered) should be affected by FakeThreadHandler.fakeDelta but satisfaction should not! */ public class PowerTests extends PowerTestFixture{ @BeforeEach void initTest(){ } @Nested class PowerGraphTests{ /** Tests the satisfaction of a single consumer after a single update of the power graph which contains a single producer. * * Assumption: When the consumer requests zero power, satisfaction does not change. Default is 0.0f. */ @TestFactory DynamicTest[] directConsumerSatisfactionIsAsExpected(){ return new DynamicTest[]{ // Note: Unfortunately, the display names are not yet output through gradle. See https://github.com/gradle/gradle/issues/5975 // That's why we inject the description into the test method for now. // Additional Note: If you don't see any labels in front of the values supplied as function parameters, use a better IDE like IntelliJ IDEA. dynamicTest("01", () -> simulateDirectConsumption(0.0f, 1.0f, 0.0f, "0.0 produced, 1.0 consumed (no power available)")), dynamicTest("02", () -> simulateDirectConsumption(0.0f, 0.0f, 0.0f, "0.0 produced, 0.0 consumed (no power anywhere)")), dynamicTest("03", () -> simulateDirectConsumption(1.0f, 0.0f, 0.0f, "1.0 produced, 0.0 consumed (no power requested)")), dynamicTest("04", () -> simulateDirectConsumption(1.0f, 1.0f, 1.0f, "1.0 produced, 1.0 consumed (stable consumption)")), dynamicTest("05", () -> simulateDirectConsumption(0.5f, 1.0f, 0.5f, "0.5 produced, 1.0 consumed (power shortage)")), dynamicTest("06", () -> simulateDirectConsumption(1.0f, 0.5f, 1.0f, "1.0 produced, 0.5 consumed (power excess)")), dynamicTest("07", () -> simulateDirectConsumption(0.09f, 0.09f - MathUtils.FLOAT_ROUNDING_ERROR / 10.0f, 1.0f, "floating point inaccuracy (stable consumption)")) }; } void simulateDirectConsumption(float producedPower, float requiredPower, float expectedSatisfaction, String parameterDescription){ Tile producerTile = createFakeTile(0, 0, createFakeProducerBlock(producedPower)); producerTile.entity().productionEfficiency = 0.5f; // Currently, 0.5f = 100% Tile directConsumerTile = createFakeTile(0, 1, createFakeDirectConsumer(requiredPower, 0.6f)); PowerGraph powerGraph = new PowerGraph(); powerGraph.add(producerTile); powerGraph.add(directConsumerTile); assertEquals(producedPower * FakeThreadHandler.fakeDelta, powerGraph.getPowerProduced(), MathUtils.FLOAT_ROUNDING_ERROR); assertEquals(requiredPower * FakeThreadHandler.fakeDelta, powerGraph.getPowerNeeded(), MathUtils.FLOAT_ROUNDING_ERROR); // Update and check for the expected power satisfaction of the consumer powerGraph.update(); assertEquals(expectedSatisfaction, directConsumerTile.entity.power.satisfaction, MathUtils.FLOAT_ROUNDING_ERROR, parameterDescription + ": Satisfaction of direct consumer did not match"); } /** Tests the satisfaction of a single buffered consumer after a single update of the power graph which contains a single producer. */ @TestFactory DynamicTest[] bufferedConsumerSatisfactionIsAsExpected(){ return new DynamicTest[]{ // Note: powerPerTick may not be 0 in any of the test cases. This would equal a "ticksToFill" of infinite. // Note: Due to a fixed delta of 0.5, only half of what is defined here will in fact be produced/consumed. Keep this in mind when defining expectedSatisfaction! dynamicTest("01", () -> simulateBufferedConsumption(0.0f, 0.0f, 0.1f, 0.0f, 0.0f, "Empty Buffer, No power anywhere")), dynamicTest("02", () -> simulateBufferedConsumption(0.0f, 1.0f, 0.1f, 0.0f, 0.0f, "Empty Buffer, No power provided")), dynamicTest("03", () -> simulateBufferedConsumption(1.0f, 0.0f, 0.1f, 0.0f, 0.0f, "Empty Buffer, No power requested")), dynamicTest("04", () -> simulateBufferedConsumption(1.0f, 1.0f, 1.0f, 0.0f, 0.5f, "Empty Buffer, Stable Power, One tick to fill")), dynamicTest("05", () -> simulateBufferedConsumption(2.0f, 1.0f, 2.0f, 0.0f, 1.0f, "Empty Buffer, Stable Power, One delta to fill")), dynamicTest("06", () -> simulateBufferedConsumption(1.0f, 1.0f, 0.1f, 0.0f, 0.05f, "Empty Buffer, Stable Power, multiple ticks to fill")), dynamicTest("07", () -> simulateBufferedConsumption(1.2f, 0.5f, 1.0f, 0.0f, 1.0f, "Empty Buffer, Power excess, one delta to fill")), dynamicTest("08", () -> simulateBufferedConsumption(1.0f, 0.5f, 0.1f, 0.0f, 0.1f, "Empty Buffer, Power excess, multiple ticks to fill")), dynamicTest("09", () -> simulateBufferedConsumption(1.0f, 1.0f, 2.0f, 0.0f, 0.5f, "Empty Buffer, Power shortage, one delta to fill")), dynamicTest("10", () -> simulateBufferedConsumption(0.5f, 1.0f, 0.1f, 0.0f, 0.05f, "Empty Buffer, Power shortage, multiple ticks to fill")), dynamicTest("11", () -> simulateBufferedConsumption(0.0f, 1.0f, 0.1f, 0.5f, 0.5f, "Unchanged buffer with no power produced")), dynamicTest("12", () -> simulateBufferedConsumption(1.0f, 1.0f, 0.1f, 1.0f, 1.0f, "Unchanged buffer when already full")), dynamicTest("13", () -> simulateBufferedConsumption(0.2f, 1.0f, 0.5f, 0.5f, 0.6f, "Half buffer, power shortage")), dynamicTest("14", () -> simulateBufferedConsumption(1.0f, 1.0f, 0.5f, 0.9f, 1.0f, "Buffer does not get exceeded")), dynamicTest("15", () -> simulateBufferedConsumption(2.0f, 1.0f, 1.0f, 0.5f, 1.0f, "Half buffer, filled with excess")) }; } void simulateBufferedConsumption(float producedPower, float maxBuffer, float powerConsumedPerTick, float initialSatisfaction, float expectedSatisfaction, String parameterDescription){ Tile producerTile = createFakeTile(0, 0, createFakeProducerBlock(producedPower)); producerTile.entity().productionEfficiency = 0.5f; // Currently, 0.5 = 100% Tile bufferedConsumerTile = createFakeTile(0, 1, createFakeBufferedConsumer(maxBuffer, maxBuffer > 0.0f ? maxBuffer/powerConsumedPerTick : 1.0f)); bufferedConsumerTile.entity.power.satisfaction = initialSatisfaction; PowerGraph powerGraph = new PowerGraph(); powerGraph.add(producerTile); powerGraph.add(bufferedConsumerTile); assertEquals(producedPower * FakeThreadHandler.fakeDelta, powerGraph.getPowerProduced(), MathUtils.FLOAT_ROUNDING_ERROR, parameterDescription + ": Produced power did not match"); float expectedPowerUsage; if(initialSatisfaction == 1.0f){ expectedPowerUsage = 0f; }else{ expectedPowerUsage = Math.min(maxBuffer, powerConsumedPerTick * FakeThreadHandler.fakeDelta); } assertEquals(expectedPowerUsage, powerGraph.getPowerNeeded(), MathUtils.FLOAT_ROUNDING_ERROR, parameterDescription + ": Consumed power did not match"); // Update and check for the expected power satisfaction of the consumer powerGraph.update(); assertEquals(expectedSatisfaction, bufferedConsumerTile.entity.power.satisfaction, MathUtils.FLOAT_ROUNDING_ERROR, parameterDescription + ": Satisfaction of buffered consumer did not match"); } /** Tests the satisfaction of a single direct consumer after a single update of the power graph which contains a single producer and a single battery. * The used battery is created with a maximum capacity of 100 and receives ten power per tick. */ @TestFactory DynamicTest[] batteryCapacityIsAsExpected(){ return new DynamicTest[]{ // Note: expectedBatteryCapacity is currently adjusted to a delta of 0.5! (FakeThreadHandler sets it to that) dynamicTest("01", () -> simulateDirectConsumptionWithBattery(10.0f, 0.0f, 0.0f, 5.0f, 0.0f, "Empty battery, no consumer")), dynamicTest("02", () -> simulateDirectConsumptionWithBattery(10.0f, 0.0f, 94.999f, 99.999f, 0.0f, "Battery almost full after update, no consumer")), dynamicTest("03", () -> simulateDirectConsumptionWithBattery(10.0f, 0.0f, 100.0f, 100.0f, 0.0f, "Full battery, no consumer")), dynamicTest("04", () -> simulateDirectConsumptionWithBattery(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, "No producer, no consumer, empty battery")), dynamicTest("05", () -> simulateDirectConsumptionWithBattery(0.0f, 0.0f, 100.0f, 100.0f, 0.0f, "No producer, no consumer, full battery")), dynamicTest("06", () -> simulateDirectConsumptionWithBattery(0.0f, 10.0f, 0.0f, 0.0f, 0.0f, "No producer, empty battery")), dynamicTest("07", () -> simulateDirectConsumptionWithBattery(0.0f, 10.0f, 100.0f, 95.0f, 1.0f, "No producer, full battery")), dynamicTest("08", () -> simulateDirectConsumptionWithBattery(0.0f, 10.0f, 2.5f, 0.0f, 0.5f, "No producer, low battery")), dynamicTest("09", () -> simulateDirectConsumptionWithBattery(5.0f, 10.0f, 5.0f, 0.0f, 1.0f, "Producer + Battery = Consumed")), }; } void simulateDirectConsumptionWithBattery(float producedPower, float requestedPower, float initialBatteryCapacity, float expectedBatteryCapacity, float expectedSatisfaction, String parameterDescription){ PowerGraph powerGraph = new PowerGraph(); if(producedPower > 0.0f){ Tile producerTile = createFakeTile(0, 0, createFakeProducerBlock(producedPower)); producerTile.entity().productionEfficiency = 0.5f; powerGraph.add(producerTile); } Tile directConsumerTile = null; if(requestedPower > 0.0f){ directConsumerTile = createFakeTile(0, 1, createFakeDirectConsumer(requestedPower, 0.6f)); powerGraph.add(directConsumerTile); } float maxCapacity = 100f; Tile batteryTile = createFakeTile(0, 2, createFakeBattery(maxCapacity, 10 )); batteryTile.entity.power.satisfaction = initialBatteryCapacity / maxCapacity; powerGraph.add(batteryTile); powerGraph.update(); assertEquals(expectedBatteryCapacity / maxCapacity, batteryTile.entity.power.satisfaction, MathUtils.FLOAT_ROUNDING_ERROR, parameterDescription + ": Expected battery satisfaction did not match"); if(directConsumerTile != null){ assertEquals(expectedSatisfaction, directConsumerTile.entity.power.satisfaction, MathUtils.FLOAT_ROUNDING_ERROR, parameterDescription + ": Satisfaction of direct consumer did not match"); } } /** Makes sure a direct consumer stops working after power production is set to zero. */ @Test void directConsumptionStopsWithNoPower(){ Tile producerTile = createFakeTile(0, 0, createFakeProducerBlock(10.0f)); producerTile.entity().productionEfficiency = 1.0f; Tile consumerTile = createFakeTile(0, 1, createFakeDirectConsumer(5.0f, 0.6f)); PowerGraph powerGraph = new PowerGraph(); powerGraph.add(producerTile); powerGraph.add(consumerTile); powerGraph.update(); assertEquals(1.0f, consumerTile.entity.power.satisfaction, MathUtils.FLOAT_ROUNDING_ERROR); powerGraph.remove(producerTile); powerGraph.add(consumerTile); powerGraph.update(); assertEquals(0.0f, consumerTile.entity.power.satisfaction, MathUtils.FLOAT_ROUNDING_ERROR); if(consumerTile.block().consumes.hasSubtypeOf(ConsumePower.class)){ ConsumePower consumePower = consumerTile.block().consumes.getSubtypeOf(ConsumePower.class); assertFalse(consumePower.valid(consumerTile.block(), consumerTile.entity())); } } } }