mirror of
https://github.com/EmilHernvall/dnsguide.git
synced 2024-12-22 14:54:16 +07:00
Update examples with modernized code
This commit is contained in:
parent
31369696d9
commit
f815075ae4
225
chapter1.md
225
chapter1.md
@ -323,43 +323,43 @@ we'll use a `struct` called `BytePacketBuffer`.
|
||||
```rust
|
||||
pub struct BytePacketBuffer {
|
||||
pub buf: [u8; 512],
|
||||
pub pos: usize
|
||||
pub pos: usize,
|
||||
}
|
||||
|
||||
impl BytePacketBuffer {
|
||||
|
||||
// This gives us a fresh buffer for holding the packet contents, and a field for
|
||||
// keeping track of where we are.
|
||||
/// This gives us a fresh buffer for holding the packet contents, and a
|
||||
/// field for keeping track of where we are.
|
||||
pub fn new() -> BytePacketBuffer {
|
||||
BytePacketBuffer {
|
||||
buf: [0; 512],
|
||||
pos: 0
|
||||
pos: 0,
|
||||
}
|
||||
}
|
||||
|
||||
// When handling the reading of domain names, we'll need a way of
|
||||
// reading and manipulating our buffer position.
|
||||
|
||||
/// Current position within buffer
|
||||
fn pos(&self) -> usize {
|
||||
self.pos
|
||||
}
|
||||
|
||||
/// Step the buffer position forward a specific number of steps
|
||||
fn step(&mut self, steps: usize) -> Result<()> {
|
||||
self.pos += steps;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Change the buffer position
|
||||
fn seek(&mut self, pos: usize) -> Result<()> {
|
||||
self.pos = pos;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// A method for reading a single byte, and moving one step forward
|
||||
/// Read a single byte and move the position one step forward
|
||||
fn read(&mut self) -> Result<u8> {
|
||||
if self.pos >= 512 {
|
||||
return Err(Error::new(ErrorKind::InvalidInput, "End of buffer"));
|
||||
return Err("End of buffer".into());
|
||||
}
|
||||
let res = self.buf[self.pos];
|
||||
self.pos += 1;
|
||||
@ -367,49 +367,46 @@ impl BytePacketBuffer {
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
// Methods for fetching data at a specified position, without modifying
|
||||
// the internal position
|
||||
|
||||
/// Get a single byte, without changing the buffer position
|
||||
fn get(&mut self, pos: usize) -> Result<u8> {
|
||||
if pos >= 512 {
|
||||
return Err(Error::new(ErrorKind::InvalidInput, "End of buffer"));
|
||||
return Err("End of buffer".into());
|
||||
}
|
||||
Ok(self.buf[pos])
|
||||
}
|
||||
|
||||
/// Get a range of bytes
|
||||
fn get_range(&mut self, start: usize, len: usize) -> Result<&[u8]> {
|
||||
if start + len >= 512 {
|
||||
return Err(Error::new(ErrorKind::InvalidInput, "End of buffer"));
|
||||
return Err("End of buffer".into());
|
||||
}
|
||||
Ok(&self.buf[start..start+len as usize])
|
||||
Ok(&self.buf[start..start + len as usize])
|
||||
}
|
||||
|
||||
// Methods for reading a u16 and u32 from the buffer, while stepping
|
||||
// forward 2 or 4 bytes
|
||||
|
||||
fn read_u16(&mut self) -> Result<u16>
|
||||
{
|
||||
let res = ((try!(self.read()) as u16) << 8) |
|
||||
(try!(self.read()) as u16);
|
||||
/// Read two bytes, stepping two steps forward
|
||||
fn read_u16(&mut self) -> Result<u16> {
|
||||
let res = ((self.read()? as u16) << 8) | (self.read()? as u16);
|
||||
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
fn read_u32(&mut self) -> Result<u32>
|
||||
{
|
||||
let res = ((try!(self.read()) as u32) << 24) |
|
||||
((try!(self.read()) as u32) << 16) |
|
||||
((try!(self.read()) as u32) << 8) |
|
||||
((try!(self.read()) as u32) << 0);
|
||||
/// Read four bytes, stepping four steps forward
|
||||
fn read_u32(&mut self) -> Result<u32> {
|
||||
let res = ((self.read()? as u32) << 24)
|
||||
| ((self.read()? as u32) << 16)
|
||||
| ((self.read()? as u32) << 8)
|
||||
| ((self.read()? as u32) << 0);
|
||||
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
// The tricky part: Reading domain names, taking labels into consideration.
|
||||
// Will take something like [3]www[6]google[3]com[0] and append
|
||||
// www.google.com to outstr.
|
||||
fn read_qname(&mut self, outstr: &mut String) -> Result<()>
|
||||
{
|
||||
|
||||
/// Read a qname
|
||||
///
|
||||
/// The tricky part: Reading domain names, taking labels into consideration.
|
||||
/// Will take something like [3]www[6]google[3]com[0] and append
|
||||
/// www.google.com to outstr.
|
||||
fn read_qname(&mut self, outstr: &mut String) -> Result<()> {
|
||||
// Since we might encounter jumps, we'll keep track of our position
|
||||
// locally as opposed to using the position within the struct. This
|
||||
// allows us to move the shared position to a point past our current
|
||||
@ -419,43 +416,54 @@ impl BytePacketBuffer {
|
||||
|
||||
// track whether or not we've jumped
|
||||
let mut jumped = false;
|
||||
let max_jumps = 5;
|
||||
let mut jumps_performed = 0;
|
||||
|
||||
// Our delimiter which we append for each label. Since we don't want a dot at the
|
||||
// beginning of the domain name we'll leave it empty for now and set it to "." at
|
||||
// the end of the first iteration.
|
||||
// Our delimiter which we append for each label. Since we don't want a
|
||||
// dot at the beginning of the domain name we'll leave it empty for now
|
||||
// and set it to "." at the end of the first iteration.
|
||||
let mut delim = "";
|
||||
loop {
|
||||
// Dns Packets are untrusted data, so we need to be paranoid. Someone
|
||||
// can craft a packet with a cycle in the jump instructions. This guards
|
||||
// against such packets.
|
||||
if jumps_performed > max_jumps {
|
||||
return Err(format!("Limit of {} jumps exceeded", max_jumps).into());
|
||||
}
|
||||
|
||||
// At this point, we're always at the beginning of a label. Recall
|
||||
// that labels start with a length byte.
|
||||
let len = try!(self.get(pos));
|
||||
let len = self.get(pos)?;
|
||||
|
||||
// If len has the two most significant bit are set, it represents a jump to
|
||||
// some other offset in the packet:
|
||||
// If len has the two most significant bit are set, it represents a
|
||||
// jump to some other offset in the packet:
|
||||
if (len & 0xC0) == 0xC0 {
|
||||
// Update the buffer position to a point past the current
|
||||
// label. We don't need to touch it any further.
|
||||
if !jumped {
|
||||
try!(self.seek(pos+2));
|
||||
self.seek(pos + 2)?;
|
||||
}
|
||||
|
||||
// Read another byte, calculate offset and perform the jump by
|
||||
// updating our local position variable
|
||||
let b2 = try!(self.get(pos+1)) as u16;
|
||||
let b2 = self.get(pos + 1)? as u16;
|
||||
let offset = (((len as u16) ^ 0xC0) << 8) | b2;
|
||||
pos = offset as usize;
|
||||
|
||||
// Indicate that a jump was performed.
|
||||
jumped = true;
|
||||
}
|
||||
jumps_performed += 1;
|
||||
|
||||
continue;
|
||||
}
|
||||
// The base scenario, where we're reading a single label and
|
||||
// appending it to the output:
|
||||
else {
|
||||
// Move a single byte forward to move past the length byte.
|
||||
pos += 1;
|
||||
|
||||
// Domain names are terminated by an empty label of length 0, so if the length is zero
|
||||
// we're done.
|
||||
// Domain names are terminated by an empty label of length 0,
|
||||
// so if the length is zero we're done.
|
||||
if len == 0 {
|
||||
break;
|
||||
}
|
||||
@ -463,9 +471,9 @@ impl BytePacketBuffer {
|
||||
// Append the delimiter to our output buffer first.
|
||||
outstr.push_str(delim);
|
||||
|
||||
// Extract the actual ASCII bytes for this label and append them to the output buffer.
|
||||
|
||||
let str_buffer = try!(self.get_range(pos, len as usize));
|
||||
// Extract the actual ASCII bytes for this label and append them
|
||||
// to the output buffer.
|
||||
let str_buffer = self.get_range(pos, len as usize)?;
|
||||
outstr.push_str(&String::from_utf8_lossy(str_buffer).to_lowercase());
|
||||
|
||||
delim = ".";
|
||||
@ -475,16 +483,13 @@ impl BytePacketBuffer {
|
||||
}
|
||||
}
|
||||
|
||||
// If a jump has been performed, we've already modified the buffer position state and
|
||||
// shouldn't do so again.
|
||||
if !jumped {
|
||||
try!(self.seek(pos));
|
||||
self.seek(pos)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
} // End of read_qname
|
||||
|
||||
} // End of BytePacketBuffer
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### ResultCode
|
||||
@ -492,14 +497,14 @@ impl BytePacketBuffer {
|
||||
Before we move on to the header, we'll add an enum for the values of `rescode` field:
|
||||
|
||||
```rust
|
||||
#[derive(Copy,Clone,Debug,PartialEq,Eq)]
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
||||
pub enum ResultCode {
|
||||
NOERROR = 0,
|
||||
FORMERR = 1,
|
||||
SERVFAIL = 2,
|
||||
NXDOMAIN = 3,
|
||||
NOTIMP = 4,
|
||||
REFUSED = 5
|
||||
REFUSED = 5,
|
||||
}
|
||||
|
||||
impl ResultCode {
|
||||
@ -510,7 +515,7 @@ impl ResultCode {
|
||||
3 => ResultCode::NXDOMAIN,
|
||||
4 => ResultCode::NOTIMP,
|
||||
5 => ResultCode::REFUSED,
|
||||
0 | _ => ResultCode::NOERROR
|
||||
0 | _ => ResultCode::NOERROR,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -521,7 +526,7 @@ impl ResultCode {
|
||||
Now we can get to work on the header. We'll represent it like this:
|
||||
|
||||
```rust
|
||||
#[derive(Clone,Debug)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct DnsHeader {
|
||||
pub id: u16, // 16 bits
|
||||
|
||||
@ -540,7 +545,7 @@ pub struct DnsHeader {
|
||||
pub questions: u16, // 16 bits
|
||||
pub answers: u16, // 16 bits
|
||||
pub authoritative_entries: u16, // 16 bits
|
||||
pub resource_entries: u16 // 16 bits
|
||||
pub resource_entries: u16, // 16 bits
|
||||
}
|
||||
```
|
||||
|
||||
@ -549,7 +554,8 @@ The implementation involves a lot of bit twiddling:
|
||||
```rust
|
||||
impl DnsHeader {
|
||||
pub fn new() -> DnsHeader {
|
||||
DnsHeader { id: 0,
|
||||
DnsHeader {
|
||||
id: 0,
|
||||
|
||||
recursion_desired: false,
|
||||
truncated_message: false,
|
||||
@ -566,13 +572,14 @@ impl DnsHeader {
|
||||
questions: 0,
|
||||
answers: 0,
|
||||
authoritative_entries: 0,
|
||||
resource_entries: 0 }
|
||||
resource_entries: 0,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn read(&mut self, buffer: &mut BytePacketBuffer) -> Result<()> {
|
||||
self.id = try!(buffer.read_u16());
|
||||
self.id = buffer.read_u16()?;
|
||||
|
||||
let flags = try!(buffer.read_u16());
|
||||
let flags = buffer.read_u16()?;
|
||||
let a = (flags >> 8) as u8;
|
||||
let b = (flags & 0xFF) as u8;
|
||||
self.recursion_desired = (a & (1 << 0)) > 0;
|
||||
@ -587,10 +594,10 @@ impl DnsHeader {
|
||||
self.z = (b & (1 << 6)) > 0;
|
||||
self.recursion_available = (b & (1 << 7)) > 0;
|
||||
|
||||
self.questions = try!(buffer.read_u16());
|
||||
self.answers = try!(buffer.read_u16());
|
||||
self.authoritative_entries = try!(buffer.read_u16());
|
||||
self.resource_entries = try!(buffer.read_u16());
|
||||
self.questions = buffer.read_u16()?;
|
||||
self.answers = buffer.read_u16()?;
|
||||
self.authoritative_entries = buffer.read_u16()?;
|
||||
self.resource_entries = buffer.read_u16()?;
|
||||
|
||||
// Return the constant header size
|
||||
Ok(())
|
||||
@ -604,7 +611,7 @@ Before moving on to the question part of the packet, we'll need a way to
|
||||
represent the record type being queried:
|
||||
|
||||
```rust
|
||||
#[derive(PartialEq,Eq,Debug,Clone,Hash,Copy)]
|
||||
#[derive(PartialEq, Eq, Debug, Clone, Hash, Copy)]
|
||||
pub enum QueryType {
|
||||
UNKNOWN(u16),
|
||||
A, // 1
|
||||
@ -621,7 +628,7 @@ impl QueryType {
|
||||
pub fn from_num(num: u16) -> QueryType {
|
||||
match num {
|
||||
1 => QueryType::A,
|
||||
_ => QueryType::UNKNOWN(num)
|
||||
_ => QueryType::UNKNOWN(num),
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -633,24 +640,24 @@ The enum allows us to easily add more record types later on. Now for the
|
||||
question entries:
|
||||
|
||||
```rust
|
||||
#[derive(Debug,Clone,PartialEq,Eq)]
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct DnsQuestion {
|
||||
pub name: String,
|
||||
pub qtype: QueryType
|
||||
pub qtype: QueryType,
|
||||
}
|
||||
|
||||
impl DnsQuestion {
|
||||
pub fn new(name: String, qtype: QueryType) -> DnsQuestion {
|
||||
DnsQuestion {
|
||||
name: name,
|
||||
qtype: qtype
|
||||
qtype: qtype,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn read(&mut self, buffer: &mut BytePacketBuffer) -> Result<()> {
|
||||
try!(buffer.read_qname(&mut self.name));
|
||||
self.qtype = QueryType::from_num(try!(buffer.read_u16())); // qtype
|
||||
let _ = try!(buffer.read_u16()); // class
|
||||
buffer.read_qname(&mut self.name)?;
|
||||
self.qtype = QueryType::from_num(buffer.read_u16()?); // qtype
|
||||
let _ = buffer.read_u16()?; // class
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@ -666,19 +673,19 @@ We'll obviously need a way of representing the actual dns records as well, and
|
||||
again we'll use an enum for easy expansion:
|
||||
|
||||
```rust
|
||||
#[derive(Debug,Clone,PartialEq,Eq,Hash,PartialOrd,Ord)]
|
||||
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
||||
#[allow(dead_code)]
|
||||
pub enum DnsRecord {
|
||||
UNKNOWN {
|
||||
domain: String,
|
||||
qtype: u16,
|
||||
data_len: u16,
|
||||
ttl: u32
|
||||
ttl: u32,
|
||||
}, // 0
|
||||
A {
|
||||
domain: String,
|
||||
addr: Ipv4Addr,
|
||||
ttl: u32
|
||||
ttl: u32,
|
||||
}, // 1
|
||||
}
|
||||
```
|
||||
@ -690,39 +697,40 @@ this:
|
||||
|
||||
```rust
|
||||
impl DnsRecord {
|
||||
|
||||
pub fn read(buffer: &mut BytePacketBuffer) -> Result<DnsRecord> {
|
||||
let mut domain = String::new();
|
||||
try!(buffer.read_qname(&mut domain));
|
||||
buffer.read_qname(&mut domain)?;
|
||||
|
||||
let qtype_num = try!(buffer.read_u16());
|
||||
let qtype_num = buffer.read_u16()?;
|
||||
let qtype = QueryType::from_num(qtype_num);
|
||||
let _ = try!(buffer.read_u16()); // class, which we ignore
|
||||
let ttl = try!(buffer.read_u32());
|
||||
let data_len = try!(buffer.read_u16());
|
||||
let _ = buffer.read_u16()?;
|
||||
let ttl = buffer.read_u32()?;
|
||||
let data_len = buffer.read_u16()?;
|
||||
|
||||
match qtype {
|
||||
QueryType::A => {
|
||||
let raw_addr = try!(buffer.read_u32());
|
||||
let addr = Ipv4Addr::new(((raw_addr >> 24) & 0xFF) as u8,
|
||||
let raw_addr = buffer.read_u32()?;
|
||||
let addr = Ipv4Addr::new(
|
||||
((raw_addr >> 24) & 0xFF) as u8,
|
||||
((raw_addr >> 16) & 0xFF) as u8,
|
||||
((raw_addr >> 8) & 0xFF) as u8,
|
||||
((raw_addr >> 0) & 0xFF) as u8);
|
||||
((raw_addr >> 0) & 0xFF) as u8,
|
||||
);
|
||||
|
||||
Ok(DnsRecord::A {
|
||||
domain: domain,
|
||||
addr: addr,
|
||||
ttl: ttl
|
||||
ttl: ttl,
|
||||
})
|
||||
},
|
||||
}
|
||||
QueryType::UNKNOWN(_) => {
|
||||
try!(buffer.step(data_len as usize));
|
||||
buffer.step(data_len as usize)?;
|
||||
|
||||
Ok(DnsRecord::UNKNOWN {
|
||||
domain: domain,
|
||||
qtype: qtype_num,
|
||||
data_len: data_len,
|
||||
ttl: ttl
|
||||
ttl: ttl,
|
||||
})
|
||||
}
|
||||
}
|
||||
@ -741,7 +749,7 @@ pub struct DnsPacket {
|
||||
pub questions: Vec<DnsQuestion>,
|
||||
pub answers: Vec<DnsRecord>,
|
||||
pub authorities: Vec<DnsRecord>,
|
||||
pub resources: Vec<DnsRecord>
|
||||
pub resources: Vec<DnsRecord>,
|
||||
}
|
||||
|
||||
impl DnsPacket {
|
||||
@ -751,31 +759,30 @@ impl DnsPacket {
|
||||
questions: Vec::new(),
|
||||
answers: Vec::new(),
|
||||
authorities: Vec::new(),
|
||||
resources: Vec::new()
|
||||
resources: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_buffer(buffer: &mut BytePacketBuffer) -> Result<DnsPacket> {
|
||||
let mut result = DnsPacket::new();
|
||||
try!(result.header.read(buffer));
|
||||
result.header.read(buffer)?;
|
||||
|
||||
for _ in 0..result.header.questions {
|
||||
let mut question = DnsQuestion::new("".to_string(),
|
||||
QueryType::UNKNOWN(0));
|
||||
try!(question.read(buffer));
|
||||
let mut question = DnsQuestion::new("".to_string(), QueryType::UNKNOWN(0));
|
||||
question.read(buffer)?;
|
||||
result.questions.push(question);
|
||||
}
|
||||
|
||||
for _ in 0..result.header.answers {
|
||||
let rec = try!(DnsRecord::read(buffer));
|
||||
let rec = DnsRecord::read(buffer)?;
|
||||
result.answers.push(rec);
|
||||
}
|
||||
for _ in 0..result.header.authoritative_entries {
|
||||
let rec = try!(DnsRecord::read(buffer));
|
||||
let rec = DnsRecord::read(buffer)?;
|
||||
result.authorities.push(rec);
|
||||
}
|
||||
for _ in 0..result.header.resource_entries {
|
||||
let rec = try!(DnsRecord::read(buffer));
|
||||
let rec = DnsRecord::read(buffer)?;
|
||||
result.resources.push(rec);
|
||||
}
|
||||
|
||||
@ -789,26 +796,28 @@ impl DnsPacket {
|
||||
Let's use the `response_packet.txt` we generated earlier to try it out!
|
||||
|
||||
```rust
|
||||
fn main() {
|
||||
let mut f = File::open("response_packet.txt").unwrap();
|
||||
fn main() -> Result<()> {
|
||||
let mut f = File::open("response_packet.txt")?;
|
||||
let mut buffer = BytePacketBuffer::new();
|
||||
f.read(&mut buffer.buf).unwrap();
|
||||
f.read(&mut buffer.buf)?;
|
||||
|
||||
let packet = DnsPacket::from_buffer(&mut buffer).unwrap();
|
||||
println!("{:?}", packet.header);
|
||||
let packet = DnsPacket::from_buffer(&mut buffer)?;
|
||||
println!("{:#?}", packet.header);
|
||||
|
||||
for q in packet.questions {
|
||||
println!("{:?}", q);
|
||||
println!("{:#?}", q);
|
||||
}
|
||||
for rec in packet.answers {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
for rec in packet.authorities {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
for rec in packet.resources {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
|
138
chapter2.md
138
chapter2.md
@ -21,7 +21,7 @@ impl BytePacketBuffer {
|
||||
|
||||
fn write(&mut self, val: u8) -> Result<()> {
|
||||
if self.pos >= 512 {
|
||||
return Err(Error::new(ErrorKind::InvalidInput, "End of buffer"));
|
||||
return Err("End of buffer".into());
|
||||
}
|
||||
self.buf[self.pos] = val;
|
||||
self.pos += 1;
|
||||
@ -29,23 +29,23 @@ impl BytePacketBuffer {
|
||||
}
|
||||
|
||||
fn write_u8(&mut self, val: u8) -> Result<()> {
|
||||
try!(self.write(val));
|
||||
self.write(val)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_u16(&mut self, val: u16) -> Result<()> {
|
||||
try!(self.write((val >> 8) as u8));
|
||||
try!(self.write((val & 0xFF) as u8));
|
||||
self.write((val >> 8) as u8)?;
|
||||
self.write((val & 0xFF) as u8)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn write_u32(&mut self, val: u32) -> Result<()> {
|
||||
try!(self.write(((val >> 24) & 0xFF) as u8));
|
||||
try!(self.write(((val >> 16) & 0xFF) as u8));
|
||||
try!(self.write(((val >> 8) & 0xFF) as u8));
|
||||
try!(self.write(((val >> 0) & 0xFF) as u8));
|
||||
self.write(((val >> 24) & 0xFF) as u8)?;
|
||||
self.write(((val >> 16) & 0xFF) as u8)?;
|
||||
self.write(((val >> 8) & 0xFF) as u8)?;
|
||||
self.write(((val >> 0) & 0xFF) as u8)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@ -55,22 +55,19 @@ We'll also need a function for writing query names in labeled form:
|
||||
|
||||
```rust
|
||||
fn write_qname(&mut self, qname: &str) -> Result<()> {
|
||||
|
||||
let split_str = qname.split('.').collect::<Vec<&str>>();
|
||||
|
||||
for label in split_str {
|
||||
for label in qname.split('.') {
|
||||
let len = label.len();
|
||||
if len > 0x34 {
|
||||
return Err(Error::new(ErrorKind::InvalidInput, "Single label exceeds 63 characters of length"));
|
||||
return Err("Single label exceeds 63 characters of length".into());
|
||||
}
|
||||
|
||||
try!(self.write_u8(len as u8));
|
||||
self.write_u8(len as u8)?;
|
||||
for b in label.as_bytes() {
|
||||
try!(self.write_u8(*b));
|
||||
self.write_u8(*b)?;
|
||||
}
|
||||
}
|
||||
|
||||
try!(self.write_u8(0));
|
||||
self.write_u8(0)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@ -89,24 +86,28 @@ impl DnsHeader {
|
||||
- snip -
|
||||
|
||||
pub fn write(&self, buffer: &mut BytePacketBuffer) -> Result<()> {
|
||||
try!(buffer.write_u16(self.id));
|
||||
buffer.write_u16(self.id)?;
|
||||
|
||||
try!(buffer.write_u8( ((self.recursion_desired as u8)) |
|
||||
((self.truncated_message as u8) << 1) |
|
||||
((self.authoritative_answer as u8) << 2) |
|
||||
(self.opcode << 3) |
|
||||
((self.response as u8) << 7) as u8) );
|
||||
buffer.write_u8(
|
||||
(self.recursion_desired as u8)
|
||||
| ((self.truncated_message as u8) << 1)
|
||||
| ((self.authoritative_answer as u8) << 2)
|
||||
| (self.opcode << 3)
|
||||
| ((self.response as u8) << 7) as u8,
|
||||
)?;
|
||||
|
||||
try!(buffer.write_u8( (self.rescode.clone() as u8) |
|
||||
((self.checking_disabled as u8) << 4) |
|
||||
((self.authed_data as u8) << 5) |
|
||||
((self.z as u8) << 6) |
|
||||
((self.recursion_available as u8) << 7) ));
|
||||
buffer.write_u8(
|
||||
(self.rescode.clone() as u8)
|
||||
| ((self.checking_disabled as u8) << 4)
|
||||
| ((self.authed_data as u8) << 5)
|
||||
| ((self.z as u8) << 6)
|
||||
| ((self.recursion_available as u8) << 7),
|
||||
)?;
|
||||
|
||||
try!(buffer.write_u16(self.questions));
|
||||
try!(buffer.write_u16(self.answers));
|
||||
try!(buffer.write_u16(self.authoritative_entries));
|
||||
try!(buffer.write_u16(self.resource_entries));
|
||||
buffer.write_u16(self.questions)?;
|
||||
buffer.write_u16(self.answers)?;
|
||||
buffer.write_u16(self.authoritative_entries)?;
|
||||
buffer.write_u16(self.resource_entries)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@ -124,12 +125,11 @@ impl DnsQuestion {
|
||||
- snip -
|
||||
|
||||
pub fn write(&self, buffer: &mut BytePacketBuffer) -> Result<()> {
|
||||
|
||||
try!(buffer.write_qname(&self.name));
|
||||
buffer.write_qname(&self.name)?;
|
||||
|
||||
let typenum = self.qtype.to_num();
|
||||
try!(buffer.write_u16(typenum));
|
||||
try!(buffer.write_u16(1));
|
||||
buffer.write_u16(typenum)?;
|
||||
buffer.write_u16(1)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@ -148,23 +148,26 @@ impl DnsRecord {
|
||||
- snip -
|
||||
|
||||
pub fn write(&self, buffer: &mut BytePacketBuffer) -> Result<usize> {
|
||||
|
||||
let start_pos = buffer.pos();
|
||||
|
||||
match *self {
|
||||
DnsRecord::A { ref domain, ref addr, ttl } => {
|
||||
try!(buffer.write_qname(domain));
|
||||
try!(buffer.write_u16(QueryType::A.to_num()));
|
||||
try!(buffer.write_u16(1));
|
||||
try!(buffer.write_u32(ttl));
|
||||
try!(buffer.write_u16(4));
|
||||
DnsRecord::A {
|
||||
ref domain,
|
||||
ref addr,
|
||||
ttl,
|
||||
} => {
|
||||
buffer.write_qname(domain)?;
|
||||
buffer.write_u16(QueryType::A.to_num())?;
|
||||
buffer.write_u16(1)?;
|
||||
buffer.write_u32(ttl)?;
|
||||
buffer.write_u16(4)?;
|
||||
|
||||
let octets = addr.octets();
|
||||
try!(buffer.write_u8(octets[0]));
|
||||
try!(buffer.write_u8(octets[1]));
|
||||
try!(buffer.write_u8(octets[2]));
|
||||
try!(buffer.write_u8(octets[3]));
|
||||
},
|
||||
buffer.write_u8(octets[0])?;
|
||||
buffer.write_u8(octets[1])?;
|
||||
buffer.write_u8(octets[2])?;
|
||||
buffer.write_u8(octets[3])?;
|
||||
}
|
||||
DnsRecord::UNKNOWN { .. } => {
|
||||
println!("Skipping record: {:?}", self);
|
||||
}
|
||||
@ -185,26 +188,25 @@ impl DnsPacket {
|
||||
|
||||
- snip -
|
||||
|
||||
pub fn write(&mut self, buffer: &mut BytePacketBuffer) -> Result<()>
|
||||
{
|
||||
pub fn write(&mut self, buffer: &mut BytePacketBuffer) -> Result<()> {
|
||||
self.header.questions = self.questions.len() as u16;
|
||||
self.header.answers = self.answers.len() as u16;
|
||||
self.header.authoritative_entries = self.authorities.len() as u16;
|
||||
self.header.resource_entries = self.resources.len() as u16;
|
||||
|
||||
try!(self.header.write(buffer));
|
||||
self.header.write(buffer)?;
|
||||
|
||||
for question in &self.questions {
|
||||
try!(question.write(buffer));
|
||||
question.write(buffer)?;
|
||||
}
|
||||
for rec in &self.answers {
|
||||
try!(rec.write(buffer));
|
||||
rec.write(buffer)?;
|
||||
}
|
||||
for rec in &self.authorities {
|
||||
try!(rec.write(buffer));
|
||||
rec.write(buffer)?;
|
||||
}
|
||||
for rec in &self.resources {
|
||||
try!(rec.write(buffer));
|
||||
rec.write(buffer)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
@ -219,7 +221,7 @@ We're ready to implement our stub resolver. Rust includes a convenient
|
||||
`UDPSocket` which does most of the work.
|
||||
|
||||
```rust
|
||||
fn main() {
|
||||
fn main() -> Result<()> {
|
||||
// Perform an A query for google.com
|
||||
let qname = "google.com";
|
||||
let qtype = QueryType::A;
|
||||
@ -228,7 +230,7 @@ fn main() {
|
||||
let server = ("8.8.8.8", 53);
|
||||
|
||||
// Bind a UDP socket to an arbitrary port
|
||||
let socket = UdpSocket::bind(("0.0.0.0", 43210)).unwrap();
|
||||
let socket = UdpSocket::bind(("0.0.0.0", 43210))?;
|
||||
|
||||
// Build our query packet. It's important that we remember to set the
|
||||
// `recursion_desired` flag. As noted earlier, the packet id is arbitrary.
|
||||
@ -237,37 +239,41 @@ fn main() {
|
||||
packet.header.id = 6666;
|
||||
packet.header.questions = 1;
|
||||
packet.header.recursion_desired = true;
|
||||
packet.questions.push(DnsQuestion::new(qname.to_string(), qtype));
|
||||
packet
|
||||
.questions
|
||||
.push(DnsQuestion::new(qname.to_string(), qtype));
|
||||
|
||||
// Use our new write method to write the packet to a buffer...
|
||||
let mut req_buffer = BytePacketBuffer::new();
|
||||
packet.write(&mut req_buffer).unwrap();
|
||||
packet.write(&mut req_buffer)?;
|
||||
|
||||
// ...and send it off to the server using our socket:
|
||||
socket.send_to(&req_buffer.buf[0..req_buffer.pos], server).unwrap();
|
||||
socket.send_to(&req_buffer.buf[0..req_buffer.pos], server)?;
|
||||
|
||||
// To prepare for receiving the response, we'll create a new `BytePacketBuffer`,
|
||||
// and ask the socket to write the response directly into our buffer.
|
||||
let mut res_buffer = BytePacketBuffer::new();
|
||||
socket.recv_from(&mut res_buffer.buf).unwrap();
|
||||
socket.recv_from(&mut res_buffer.buf)?;
|
||||
|
||||
// As per the previous section, `DnsPacket::from_buffer()` is then used to
|
||||
// actually parse the packet after which we can print the response.
|
||||
let res_packet = DnsPacket::from_buffer(&mut res_buffer).unwrap();
|
||||
println!("{:?}", res_packet.header);
|
||||
let res_packet = DnsPacket::from_buffer(&mut res_buffer)?;
|
||||
println!("{:#?}", res_packet.header);
|
||||
|
||||
for q in res_packet.questions {
|
||||
println!("{:?}", q);
|
||||
println!("{:#?}", q);
|
||||
}
|
||||
for rec in res_packet.answers {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
for rec in res_packet.authorities {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
for rec in res_packet.resources {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
```
|
||||
|
||||
|
231
chapter3.md
231
chapter3.md
@ -68,7 +68,7 @@ Let's go ahead and add them to our code! First we'll update our `QueryType`
|
||||
enum:
|
||||
|
||||
```rust
|
||||
#[derive(PartialEq,Eq,Debug,Clone,Hash,Copy)]
|
||||
#[derive(PartialEq, Eq, Debug, Clone, Hash, Copy)]
|
||||
pub enum QueryType {
|
||||
UNKNOWN(u16),
|
||||
A, // 1
|
||||
@ -101,7 +101,7 @@ impl QueryType {
|
||||
5 => QueryType::CNAME,
|
||||
15 => QueryType::MX,
|
||||
28 => QueryType::AAAA,
|
||||
_ => QueryType::UNKNOWN(num)
|
||||
_ => QueryType::UNKNOWN(num),
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -113,40 +113,40 @@ Now we need a way of holding the data for these records, so we'll make some
|
||||
modifications to `DnsRecord`.
|
||||
|
||||
```rust
|
||||
#[derive(Debug,Clone,PartialEq,Eq,Hash,PartialOrd,Ord)]
|
||||
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
||||
#[allow(dead_code)]
|
||||
pub enum DnsRecord {
|
||||
UNKNOWN {
|
||||
domain: String,
|
||||
qtype: u16,
|
||||
data_len: u16,
|
||||
ttl: u32
|
||||
ttl: u32,
|
||||
}, // 0
|
||||
A {
|
||||
domain: String,
|
||||
addr: Ipv4Addr,
|
||||
ttl: u32
|
||||
ttl: u32,
|
||||
}, // 1
|
||||
NS {
|
||||
domain: String,
|
||||
host: String,
|
||||
ttl: u32
|
||||
ttl: u32,
|
||||
}, // 2
|
||||
CNAME {
|
||||
domain: String,
|
||||
host: String,
|
||||
ttl: u32
|
||||
ttl: u32,
|
||||
}, // 5
|
||||
MX {
|
||||
domain: String,
|
||||
priority: u16,
|
||||
host: String,
|
||||
ttl: u32
|
||||
ttl: u32,
|
||||
}, // 15
|
||||
AAAA {
|
||||
domain: String,
|
||||
addr: Ipv6Addr,
|
||||
ttl: u32
|
||||
ttl: u32,
|
||||
}, // 28
|
||||
}
|
||||
```
|
||||
@ -156,106 +156,101 @@ and reading records. Starting with read, we amend it with additional code for
|
||||
each record type. First off, we've got the common preamble:
|
||||
|
||||
```rust
|
||||
pub fn read(buffer: &mut BytePacketBuffer) -> Result<DnsRecord> {
|
||||
impl DnsRecord {
|
||||
pub fn read(buffer: &mut BytePacketBuffer) -> Result<DnsRecord> {
|
||||
let mut domain = String::new();
|
||||
try!(buffer.read_qname(&mut domain));
|
||||
buffer.read_qname(&mut domain)?;
|
||||
|
||||
let qtype_num = try!(buffer.read_u16());
|
||||
let qtype_num = buffer.read_u16()?;
|
||||
let qtype = QueryType::from_num(qtype_num);
|
||||
let _ = try!(buffer.read_u16());
|
||||
let ttl = try!(buffer.read_u32());
|
||||
let data_len = try!(buffer.read_u16());
|
||||
let _ = buffer.read_u16()?;
|
||||
let ttl = buffer.read_u32()?;
|
||||
let data_len = buffer.read_u16()?;
|
||||
|
||||
match qtype {
|
||||
|
||||
// Handle each record type separately, starting with the A record
|
||||
// type which remains the same as before.
|
||||
QueryType::A => {
|
||||
let raw_addr = try!(buffer.read_u32());
|
||||
let addr = Ipv4Addr::new(((raw_addr >> 24) & 0xFF) as u8,
|
||||
let raw_addr = buffer.read_u32()?;
|
||||
let addr = Ipv4Addr::new(
|
||||
((raw_addr >> 24) & 0xFF) as u8,
|
||||
((raw_addr >> 16) & 0xFF) as u8,
|
||||
((raw_addr >> 8) & 0xFF) as u8,
|
||||
((raw_addr >> 0) & 0xFF) as u8);
|
||||
((raw_addr >> 0) & 0xFF) as u8,
|
||||
);
|
||||
|
||||
Ok(DnsRecord::A {
|
||||
domain: domain,
|
||||
addr: addr,
|
||||
ttl: ttl
|
||||
ttl: ttl,
|
||||
})
|
||||
},
|
||||
|
||||
// The AAAA record type follows the same logic, but with more numbers to keep
|
||||
// track off.
|
||||
}
|
||||
QueryType::AAAA => {
|
||||
let raw_addr1 = try!(buffer.read_u32());
|
||||
let raw_addr2 = try!(buffer.read_u32());
|
||||
let raw_addr3 = try!(buffer.read_u32());
|
||||
let raw_addr4 = try!(buffer.read_u32());
|
||||
let addr = Ipv6Addr::new(((raw_addr1 >> 16) & 0xFFFF) as u16,
|
||||
let raw_addr1 = buffer.read_u32()?;
|
||||
let raw_addr2 = buffer.read_u32()?;
|
||||
let raw_addr3 = buffer.read_u32()?;
|
||||
let raw_addr4 = buffer.read_u32()?;
|
||||
let addr = Ipv6Addr::new(
|
||||
((raw_addr1 >> 16) & 0xFFFF) as u16,
|
||||
((raw_addr1 >> 0) & 0xFFFF) as u16,
|
||||
((raw_addr2 >> 16) & 0xFFFF) as u16,
|
||||
((raw_addr2 >> 0) & 0xFFFF) as u16,
|
||||
((raw_addr3 >> 16) & 0xFFFF) as u16,
|
||||
((raw_addr3 >> 0) & 0xFFFF) as u16,
|
||||
((raw_addr4 >> 16) & 0xFFFF) as u16,
|
||||
((raw_addr4 >> 0) & 0xFFFF) as u16);
|
||||
((raw_addr4 >> 0) & 0xFFFF) as u16,
|
||||
);
|
||||
|
||||
Ok(DnsRecord::AAAA {
|
||||
domain: domain,
|
||||
addr: addr,
|
||||
ttl: ttl
|
||||
ttl: ttl,
|
||||
})
|
||||
},
|
||||
|
||||
// NS and CNAME both have the same structure.
|
||||
}
|
||||
QueryType::NS => {
|
||||
let mut ns = String::new();
|
||||
try!(buffer.read_qname(&mut ns));
|
||||
buffer.read_qname(&mut ns)?;
|
||||
|
||||
Ok(DnsRecord::NS {
|
||||
domain: domain,
|
||||
host: ns,
|
||||
ttl: ttl
|
||||
ttl: ttl,
|
||||
})
|
||||
},
|
||||
|
||||
}
|
||||
QueryType::CNAME => {
|
||||
let mut cname = String::new();
|
||||
try!(buffer.read_qname(&mut cname));
|
||||
buffer.read_qname(&mut cname)?;
|
||||
|
||||
Ok(DnsRecord::CNAME {
|
||||
domain: domain,
|
||||
host: cname,
|
||||
ttl: ttl
|
||||
ttl: ttl,
|
||||
})
|
||||
},
|
||||
|
||||
// MX is almost like the previous two, but with one extra field for priority.
|
||||
}
|
||||
QueryType::MX => {
|
||||
let priority = try!(buffer.read_u16());
|
||||
let priority = buffer.read_u16()?;
|
||||
let mut mx = String::new();
|
||||
try!(buffer.read_qname(&mut mx));
|
||||
buffer.read_qname(&mut mx)?;
|
||||
|
||||
Ok(DnsRecord::MX {
|
||||
domain: domain,
|
||||
priority: priority,
|
||||
host: mx,
|
||||
ttl: ttl
|
||||
ttl: ttl,
|
||||
})
|
||||
},
|
||||
|
||||
// And we end with some code for handling unknown record types, as before.
|
||||
}
|
||||
QueryType::UNKNOWN(_) => {
|
||||
try!(buffer.step(data_len as usize));
|
||||
buffer.step(data_len as usize)?;
|
||||
|
||||
Ok(DnsRecord::UNKNOWN {
|
||||
domain: domain,
|
||||
qtype: qtype_num,
|
||||
data_len: data_len,
|
||||
ttl: ttl
|
||||
ttl: ttl,
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
- snip -
|
||||
}
|
||||
```
|
||||
|
||||
@ -280,8 +275,8 @@ impl BytePacketBuffer {
|
||||
}
|
||||
|
||||
fn set_u16(&mut self, pos: usize, val: u16) -> Result<()> {
|
||||
try!(self.set(pos,(val >> 8) as u8));
|
||||
try!(self.set(pos+1,(val & 0xFF) as u8));
|
||||
self.set(pos, (val >> 8) as u8)?;
|
||||
self.set(pos + 1, (val & 0xFF) as u8)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@ -289,89 +284,119 @@ impl BytePacketBuffer {
|
||||
}
|
||||
```
|
||||
|
||||
When writing the labels of a record, we don't know ahead of time the number of
|
||||
bytes needed, since we might end up using jumps to compress the size. We'll
|
||||
solve this by writing a zero size and then going back to fill in the size
|
||||
needed.
|
||||
|
||||
### Extending DnsRecord for writing new record types
|
||||
|
||||
Now we can amend `DnsRecord::write`. Here's our new function:
|
||||
|
||||
```rust
|
||||
pub fn write(&self, buffer: &mut BytePacketBuffer) -> Result<usize> {
|
||||
impl DnsRecord {
|
||||
|
||||
- snip -
|
||||
|
||||
pub fn write(&self, buffer: &mut BytePacketBuffer) -> Result<usize> {
|
||||
let start_pos = buffer.pos();
|
||||
|
||||
match *self {
|
||||
DnsRecord::A { ref domain, ref addr, ttl } => {
|
||||
try!(buffer.write_qname(domain));
|
||||
try!(buffer.write_u16(QueryType::A.to_num()));
|
||||
try!(buffer.write_u16(1));
|
||||
try!(buffer.write_u32(ttl));
|
||||
try!(buffer.write_u16(4));
|
||||
DnsRecord::A {
|
||||
ref domain,
|
||||
ref addr,
|
||||
ttl,
|
||||
} => {
|
||||
buffer.write_qname(domain)?;
|
||||
buffer.write_u16(QueryType::A.to_num())?;
|
||||
buffer.write_u16(1)?;
|
||||
buffer.write_u32(ttl)?;
|
||||
buffer.write_u16(4)?;
|
||||
|
||||
let octets = addr.octets();
|
||||
try!(buffer.write_u8(octets[0]));
|
||||
try!(buffer.write_u8(octets[1]));
|
||||
try!(buffer.write_u8(octets[2]));
|
||||
try!(buffer.write_u8(octets[3]));
|
||||
},
|
||||
DnsRecord::NS { ref domain, ref host, ttl } => {
|
||||
try!(buffer.write_qname(domain));
|
||||
try!(buffer.write_u16(QueryType::NS.to_num()));
|
||||
try!(buffer.write_u16(1));
|
||||
try!(buffer.write_u32(ttl));
|
||||
buffer.write_u8(octets[0])?;
|
||||
buffer.write_u8(octets[1])?;
|
||||
buffer.write_u8(octets[2])?;
|
||||
buffer.write_u8(octets[3])?;
|
||||
}
|
||||
DnsRecord::NS {
|
||||
ref domain,
|
||||
ref host,
|
||||
ttl,
|
||||
} => {
|
||||
buffer.write_qname(domain)?;
|
||||
buffer.write_u16(QueryType::NS.to_num())?;
|
||||
buffer.write_u16(1)?;
|
||||
buffer.write_u32(ttl)?;
|
||||
|
||||
let pos = buffer.pos();
|
||||
try!(buffer.write_u16(0));
|
||||
buffer.write_u16(0)?;
|
||||
|
||||
try!(buffer.write_qname(host));
|
||||
buffer.write_qname(host)?;
|
||||
|
||||
let size = buffer.pos() - (pos + 2);
|
||||
try!(buffer.set_u16(pos, size as u16));
|
||||
},
|
||||
DnsRecord::CNAME { ref domain, ref host, ttl } => {
|
||||
try!(buffer.write_qname(domain));
|
||||
try!(buffer.write_u16(QueryType::CNAME.to_num()));
|
||||
try!(buffer.write_u16(1));
|
||||
try!(buffer.write_u32(ttl));
|
||||
buffer.set_u16(pos, size as u16)?;
|
||||
}
|
||||
DnsRecord::CNAME {
|
||||
ref domain,
|
||||
ref host,
|
||||
ttl,
|
||||
} => {
|
||||
buffer.write_qname(domain)?;
|
||||
buffer.write_u16(QueryType::CNAME.to_num())?;
|
||||
buffer.write_u16(1)?;
|
||||
buffer.write_u32(ttl)?;
|
||||
|
||||
let pos = buffer.pos();
|
||||
try!(buffer.write_u16(0));
|
||||
buffer.write_u16(0)?;
|
||||
|
||||
try!(buffer.write_qname(host));
|
||||
buffer.write_qname(host)?;
|
||||
|
||||
let size = buffer.pos() - (pos + 2);
|
||||
try!(buffer.set_u16(pos, size as u16));
|
||||
},
|
||||
DnsRecord::MX { ref domain, priority, ref host, ttl } => {
|
||||
try!(buffer.write_qname(domain));
|
||||
try!(buffer.write_u16(QueryType::MX.to_num()));
|
||||
try!(buffer.write_u16(1));
|
||||
try!(buffer.write_u32(ttl));
|
||||
buffer.set_u16(pos, size as u16)?;
|
||||
}
|
||||
DnsRecord::MX {
|
||||
ref domain,
|
||||
priority,
|
||||
ref host,
|
||||
ttl,
|
||||
} => {
|
||||
buffer.write_qname(domain)?;
|
||||
buffer.write_u16(QueryType::MX.to_num())?;
|
||||
buffer.write_u16(1)?;
|
||||
buffer.write_u32(ttl)?;
|
||||
|
||||
let pos = buffer.pos();
|
||||
try!(buffer.write_u16(0));
|
||||
buffer.write_u16(0)?;
|
||||
|
||||
try!(buffer.write_u16(priority));
|
||||
try!(buffer.write_qname(host));
|
||||
buffer.write_u16(priority)?;
|
||||
buffer.write_qname(host)?;
|
||||
|
||||
let size = buffer.pos() - (pos + 2);
|
||||
try!(buffer.set_u16(pos, size as u16));
|
||||
},
|
||||
DnsRecord::AAAA { ref domain, ref addr, ttl } => {
|
||||
try!(buffer.write_qname(domain));
|
||||
try!(buffer.write_u16(QueryType::AAAA.to_num()));
|
||||
try!(buffer.write_u16(1));
|
||||
try!(buffer.write_u32(ttl));
|
||||
try!(buffer.write_u16(16));
|
||||
buffer.set_u16(pos, size as u16)?;
|
||||
}
|
||||
DnsRecord::AAAA {
|
||||
ref domain,
|
||||
ref addr,
|
||||
ttl,
|
||||
} => {
|
||||
buffer.write_qname(domain)?;
|
||||
buffer.write_u16(QueryType::AAAA.to_num())?;
|
||||
buffer.write_u16(1)?;
|
||||
buffer.write_u32(ttl)?;
|
||||
buffer.write_u16(16)?;
|
||||
|
||||
for octet in &addr.segments() {
|
||||
try!(buffer.write_u16(*octet));
|
||||
buffer.write_u16(*octet)?;
|
||||
}
|
||||
}
|
||||
},
|
||||
DnsRecord::UNKNOWN { .. } => {
|
||||
println!("Skipping record: {:?}", self);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(buffer.pos() - start_pos)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
|
29
chapter4.md
29
chapter4.md
@ -141,26 +141,27 @@ work, it's a rather quick effort!
|
||||
|
||||
We'll start out by doing some quick refactoring, moving our lookup code into
|
||||
a separate function. This is for the most part the same code as we had in our
|
||||
`main` function in the previous chapter, with the only change being that we
|
||||
handle errors gracefully using `try!`.
|
||||
`main` function in the previous chapter.
|
||||
|
||||
```rust
|
||||
fn lookup(qname: &str, qtype: QueryType, server: (&str, u16)) -> Result<DnsPacket> {
|
||||
let socket = try!(UdpSocket::bind(("0.0.0.0", 43210)));
|
||||
let socket = UdpSocket::bind(("0.0.0.0", 43210))?;
|
||||
|
||||
let mut packet = DnsPacket::new();
|
||||
|
||||
packet.header.id = 6666;
|
||||
packet.header.questions = 1;
|
||||
packet.header.recursion_desired = true;
|
||||
packet.questions.push(DnsQuestion::new(qname.to_string(), qtype));
|
||||
packet
|
||||
.questions
|
||||
.push(DnsQuestion::new(qname.to_string(), qtype));
|
||||
|
||||
let mut req_buffer = BytePacketBuffer::new();
|
||||
packet.write(&mut req_buffer).unwrap();
|
||||
try!(socket.send_to(&req_buffer.buf[0..req_buffer.pos], server));
|
||||
packet.write(&mut req_buffer)?;
|
||||
socket.send_to(&req_buffer.buf[0..req_buffer.pos], server)?;
|
||||
|
||||
let mut res_buffer = BytePacketBuffer::new();
|
||||
socket.recv_from(&mut res_buffer.buf).unwrap();
|
||||
socket.recv_from(&mut res_buffer.buf)?;
|
||||
|
||||
DnsPacket::from_buffer(&mut res_buffer)
|
||||
}
|
||||
@ -171,12 +172,12 @@ fn lookup(qname: &str, qtype: QueryType, server: (&str, u16)) -> Result<DnsPacke
|
||||
Now we'll write our server code. First, we need get some things in order.
|
||||
|
||||
```rust
|
||||
fn main() {
|
||||
fn main() -> Result<()> {
|
||||
// Forward queries to Google's public DNS
|
||||
let server = ("8.8.8.8", 53);
|
||||
|
||||
// Bind an UDP socket on port 2053
|
||||
let socket = UdpSocket::bind(("0.0.0.0", 2053)).unwrap();
|
||||
let socket = UdpSocket::bind(("0.0.0.0", 2053))?;
|
||||
|
||||
// For now, queries are handled sequentially, so an infinite loop for servicing
|
||||
// requests is initiated.
|
||||
@ -224,7 +225,6 @@ fn main() {
|
||||
if request.questions.is_empty() {
|
||||
packet.header.rescode = ResultCode::FORMERR;
|
||||
}
|
||||
|
||||
// Usually a question will be present, though.
|
||||
else {
|
||||
let question = &request.questions[0];
|
||||
@ -254,12 +254,12 @@ fn main() {
|
||||
} else {
|
||||
packet.header.rescode = ResultCode::SERVFAIL;
|
||||
}
|
||||
}
|
||||
|
||||
// The only thing remaining is to encode our response and send it off!
|
||||
|
||||
let mut res_buffer = BytePacketBuffer::new();
|
||||
match packet.write(&mut res_buffer) {
|
||||
Ok(_) => {},
|
||||
Ok(_) => {}
|
||||
Err(e) => {
|
||||
println!("Failed to encode UDP response packet: {:?}", e);
|
||||
continue;
|
||||
@ -276,15 +276,14 @@ fn main() {
|
||||
};
|
||||
|
||||
match socket.send_to(data, src) {
|
||||
Ok(_) => {},
|
||||
Ok(_) => {}
|
||||
Err(e) => {
|
||||
println!("Failed to send response buffer: {:?}", e);
|
||||
continue;
|
||||
}
|
||||
};
|
||||
}
|
||||
} // End of request loop
|
||||
} // End of main
|
||||
}
|
||||
```
|
||||
|
||||
The match idiom for error handling is used again and again here, since we want to avoid
|
||||
|
141
chapter5.md
141
chapter5.md
@ -168,90 +168,69 @@ impl DnsPacket {
|
||||
|
||||
- snip -
|
||||
|
||||
// It's useful to be able to pick a random A record from a packet. When we
|
||||
// get multiple IP's for a single name, it doesn't matter which one we
|
||||
// choose, so in those cases we can now pick one at random.
|
||||
/// It's useful to be able to pick a random A record from a packet. When we
|
||||
/// get multiple IP's for a single name, it doesn't matter which one we
|
||||
/// choose, so in those cases we can now pick one at random.
|
||||
pub fn get_random_a(&self) -> Option<String> {
|
||||
if !self.answers.is_empty() {
|
||||
let idx = random::<usize>() % self.answers.len();
|
||||
let a_record = &self.answers[idx];
|
||||
if let DnsRecord::A{ ref addr, .. } = *a_record {
|
||||
return Some(addr.to_string());
|
||||
}
|
||||
self.answers
|
||||
.iter()
|
||||
.filter_map(|record| match record {
|
||||
DnsRecord::A { ref addr, .. } => Some(addr.to_string()),
|
||||
_ => None,
|
||||
})
|
||||
.next()
|
||||
}
|
||||
|
||||
None
|
||||
/// A helper function which returns an iterator over all name servers in
|
||||
/// the authorities section, represented as (domain, host) tuples
|
||||
fn get_ns<'a>(&'a self, qname: &'a str) -> impl Iterator<Item=(&'a str, &'a str)> {
|
||||
self.authorities.iter()
|
||||
// In practice, these are always NS records in well formed packages.
|
||||
// Convert the NS records to a tuple which has only the data we need
|
||||
// to make it easy to work with.
|
||||
.filter_map(|record| match record {
|
||||
DnsRecord::NS { domain, host, .. } => Some((domain.as_str(), host.as_str())),
|
||||
_ => None,
|
||||
})
|
||||
// Discard servers which aren't authoritative to our query
|
||||
.filter(move |(domain, _)| qname.ends_with(*domain))
|
||||
}
|
||||
|
||||
// We'll use the fact that name servers often bundle the corresponding
|
||||
// A records when replying to an NS query to implement a function that returns
|
||||
// the actual IP for an NS record if possible.
|
||||
/// When there is a NS record in the authorities section, there may also
|
||||
/// be a matching A record in the additional section. This saves us
|
||||
/// from doing a separate query to resolve the IP of the name server.
|
||||
pub fn get_resolved_ns(&self, qname: &str) -> Option<String> {
|
||||
|
||||
// First, we scan the list of NS records in the authorities section:
|
||||
let mut new_authorities = Vec::new();
|
||||
for auth in &self.authorities {
|
||||
if let DnsRecord::NS { ref domain, ref host, .. } = *auth {
|
||||
if !qname.ends_with(domain) {
|
||||
continue;
|
||||
// Get an iterator over the nameservers in the authorities section
|
||||
self.get_ns(qname)
|
||||
// Now we need to look for a matching A record in the additional
|
||||
// section. Since we just want the first valid record, we can just
|
||||
// build a stream of matching records.
|
||||
.flat_map(|(_, host)| {
|
||||
self.resources.iter()
|
||||
// Filter for A records where the domain match the host
|
||||
// of the NS record that we are currently processing
|
||||
.filter_map(move |record| match record {
|
||||
DnsRecord::A { domain, addr, .. } if domain == host => Some(addr),
|
||||
_ => None,
|
||||
})
|
||||
})
|
||||
.map(|addr| addr.to_string())
|
||||
// Finally, pick the first valid entry
|
||||
.next()
|
||||
}
|
||||
|
||||
// Once we've found an NS record, we scan the resources record for a matching
|
||||
// A record...
|
||||
for rsrc in &self.resources {
|
||||
if let DnsRecord::A{ ref domain, ref addr, ttl } = *rsrc {
|
||||
if domain != host {
|
||||
continue;
|
||||
}
|
||||
|
||||
let rec = DnsRecord::A {
|
||||
domain: host.clone(),
|
||||
addr: *addr,
|
||||
ttl: ttl
|
||||
};
|
||||
|
||||
// ...and push any matches to a list.
|
||||
new_authorities.push(rec);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If there are any matches, we pick the first one.
|
||||
if !new_authorities.is_empty() {
|
||||
if let DnsRecord::A { addr, .. } = new_authorities[0] {
|
||||
return Some(addr.to_string());
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
} // End of get_resolved_ns
|
||||
|
||||
// However, not all name servers are as that nice. In certain cases there won't
|
||||
// be any A records in the additional section, and we'll have to perform *another*
|
||||
// lookup in the midst. For this, we introduce a method for returning the host
|
||||
// name of an appropriate name server.
|
||||
/// However, not all name servers are as that nice. In certain cases there won't
|
||||
/// be any A records in the additional section, and we'll have to perform *another*
|
||||
/// lookup in the midst of our first. For this, we introduce a method for
|
||||
returning the hostname of an appropriate name server.
|
||||
pub fn get_unresolved_ns(&self, qname: &str) -> Option<String> {
|
||||
|
||||
let mut new_authorities = Vec::new();
|
||||
for auth in &self.authorities {
|
||||
if let DnsRecord::NS { ref domain, ref host, .. } = *auth {
|
||||
if !qname.ends_with(domain) {
|
||||
continue;
|
||||
// Get an iterator over the nameservers in the authorities section
|
||||
self.get_ns(qname)
|
||||
.map(|(_, host)| host.to_string())
|
||||
// Finally, pick the first valid entry
|
||||
.next()
|
||||
}
|
||||
|
||||
new_authorities.push(host);
|
||||
}
|
||||
}
|
||||
|
||||
if !new_authorities.is_empty() {
|
||||
let idx = random::<usize>() % new_authorities.len();
|
||||
return Some(new_authorities[idx].clone());
|
||||
}
|
||||
|
||||
None
|
||||
} // End of get_unresolved_ns
|
||||
|
||||
} // End of DnsPacket
|
||||
```
|
||||
|
||||
@ -273,12 +252,10 @@ fn recursive_lookup(qname: &str, qtype: QueryType) -> Result<DnsPacket> {
|
||||
let ns_copy = ns.clone();
|
||||
|
||||
let server = (ns_copy.as_str(), 53);
|
||||
let response = try!(lookup(qname, qtype.clone(), server));
|
||||
let response = lookup(qname, qtype.clone(), server)?;
|
||||
|
||||
// If there are entries in the answer section, and no errors, we are done!
|
||||
if !response.answers.is_empty() &&
|
||||
response.header.rescode == ResultCode::NOERROR {
|
||||
|
||||
if !response.answers.is_empty() && response.header.rescode == ResultCode::NOERROR {
|
||||
return Ok(response.clone());
|
||||
}
|
||||
|
||||
@ -301,23 +278,23 @@ fn recursive_lookup(qname: &str, qtype: QueryType) -> Result<DnsPacket> {
|
||||
// we'll go with what the last server told us.
|
||||
let new_ns_name = match response.get_unresolved_ns(qname) {
|
||||
Some(x) => x,
|
||||
None => return Ok(response.clone())
|
||||
None => return Ok(response.clone()),
|
||||
};
|
||||
|
||||
// Here we go down the rabbit hole by starting _another_ lookup sequence in the
|
||||
// midst of our current one. Hopefully, this will give us the IP of an appropriate
|
||||
// name server.
|
||||
let recursive_response = try!(recursive_lookup(&new_ns_name, QueryType::A));
|
||||
let recursive_response = recursive_lookup(&new_ns_name, QueryType::A)?;
|
||||
|
||||
// Finally, we pick a random ip from the result, and restart the loop. If no such
|
||||
// record is available, we again return the last result we got.
|
||||
if let Some(new_ns) = recursive_response.get_random_a() {
|
||||
ns = new_ns.clone();
|
||||
} else {
|
||||
return Ok(response.clone())
|
||||
return Ok(response.clone());
|
||||
}
|
||||
}
|
||||
} // End of recursive_lookup
|
||||
}
|
||||
```
|
||||
|
||||
### Trying out recursive lookup
|
||||
@ -326,7 +303,7 @@ The only thing remaining is to change our main function to use
|
||||
`recursive_lookup`:
|
||||
|
||||
```rust
|
||||
fn main() {
|
||||
fn main() -> Result<()> {
|
||||
|
||||
- snip -
|
||||
|
||||
|
@ -11,6 +11,8 @@ pub struct BytePacketBuffer {
|
||||
}
|
||||
|
||||
impl BytePacketBuffer {
|
||||
/// This gives us a fresh buffer for holding the packet contents, and a
|
||||
/// field for keeping track of where we are.
|
||||
pub fn new() -> BytePacketBuffer {
|
||||
BytePacketBuffer {
|
||||
buf: [0; 512],
|
||||
@ -18,22 +20,26 @@ impl BytePacketBuffer {
|
||||
}
|
||||
}
|
||||
|
||||
/// Current position within buffer
|
||||
fn pos(&self) -> usize {
|
||||
self.pos
|
||||
}
|
||||
|
||||
/// Step the buffer position forward a specific number of steps
|
||||
fn step(&mut self, steps: usize) -> Result<()> {
|
||||
self.pos += steps;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Change the buffer position
|
||||
fn seek(&mut self, pos: usize) -> Result<()> {
|
||||
self.pos = pos;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Read a single byte and move the position one step forward
|
||||
fn read(&mut self) -> Result<u8> {
|
||||
if self.pos >= 512 {
|
||||
return Err("End of buffer".into());
|
||||
@ -44,6 +50,7 @@ impl BytePacketBuffer {
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
/// Get a single byte, without changing the buffer position
|
||||
fn get(&mut self, pos: usize) -> Result<u8> {
|
||||
if pos >= 512 {
|
||||
return Err("End of buffer".into());
|
||||
@ -51,6 +58,7 @@ impl BytePacketBuffer {
|
||||
Ok(self.buf[pos])
|
||||
}
|
||||
|
||||
/// Get a range of bytes
|
||||
fn get_range(&mut self, start: usize, len: usize) -> Result<&[u8]> {
|
||||
if start + len >= 512 {
|
||||
return Err("End of buffer".into());
|
||||
@ -58,12 +66,14 @@ impl BytePacketBuffer {
|
||||
Ok(&self.buf[start..start + len as usize])
|
||||
}
|
||||
|
||||
/// Read two bytes, stepping two steps forward
|
||||
fn read_u16(&mut self) -> Result<u16> {
|
||||
let res = ((self.read()? as u16) << 8) | (self.read()? as u16);
|
||||
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
/// Read four bytes, stepping four steps forward
|
||||
fn read_u32(&mut self) -> Result<u32> {
|
||||
let res = ((self.read()? as u32) << 24)
|
||||
| ((self.read()? as u32) << 16)
|
||||
@ -73,13 +83,28 @@ impl BytePacketBuffer {
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
/// Read a qname
|
||||
///
|
||||
/// The tricky part: Reading domain names, taking labels into consideration.
|
||||
/// Will take something like [3]www[6]google[3]com[0] and append
|
||||
/// www.google.com to outstr.
|
||||
fn read_qname(&mut self, outstr: &mut String) -> Result<()> {
|
||||
// Since we might encounter jumps, we'll keep track of our position
|
||||
// locally as opposed to using the position within the struct. This
|
||||
// allows us to move the shared position to a point past our current
|
||||
// qname, while keeping track of our progress on the current qname
|
||||
// using this variable.
|
||||
let mut pos = self.pos();
|
||||
let mut jumped = false;
|
||||
|
||||
let mut delim = "";
|
||||
// track whether or not we've jumped
|
||||
let mut jumped = false;
|
||||
let max_jumps = 5;
|
||||
let mut jumps_performed = 0;
|
||||
|
||||
// Our delimiter which we append for each label. Since we don't want a
|
||||
// dot at the beginning of the domain name we'll leave it empty for now
|
||||
// and set it to "." at the end of the first iteration.
|
||||
let mut delim = "";
|
||||
loop {
|
||||
// Dns Packets are untrusted data, so we need to be paranoid. Someone
|
||||
// can craft a packet with a cycle in the jump instructions. This guards
|
||||
@ -88,43 +113,57 @@ impl BytePacketBuffer {
|
||||
return Err(format!("Limit of {} jumps exceeded", max_jumps).into());
|
||||
}
|
||||
|
||||
// At this point, we're always at the beginning of a label. Recall
|
||||
// that labels start with a length byte.
|
||||
let len = self.get(pos)?;
|
||||
|
||||
// A two byte sequence, where the two highest bits of the first byte is
|
||||
// set, represents a offset relative to the start of the buffer. We
|
||||
// handle this by jumping to the offset, setting a flag to indicate
|
||||
// that we shouldn't update the shared buffer position once done.
|
||||
// If len has the two most significant bit are set, it represents a
|
||||
// jump to some other offset in the packet:
|
||||
if (len & 0xC0) == 0xC0 {
|
||||
// When a jump is performed, we only modify the shared buffer
|
||||
// position once, and avoid making the change later on.
|
||||
// Update the buffer position to a point past the current
|
||||
// label. We don't need to touch it any further.
|
||||
if !jumped {
|
||||
self.seek(pos + 2)?;
|
||||
}
|
||||
|
||||
// Read another byte, calculate offset and perform the jump by
|
||||
// updating our local position variable
|
||||
let b2 = self.get(pos + 1)? as u16;
|
||||
let offset = (((len as u16) ^ 0xC0) << 8) | b2;
|
||||
pos = offset as usize;
|
||||
|
||||
// Indicate that a jump was performed.
|
||||
jumped = true;
|
||||
jumps_performed += 1;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// The base scenario, where we're reading a single label and
|
||||
// appending it to the output:
|
||||
else {
|
||||
// Move a single byte forward to move past the length byte.
|
||||
pos += 1;
|
||||
|
||||
// Names are terminated by an empty label of length 0
|
||||
// Domain names are terminated by an empty label of length 0,
|
||||
// so if the length is zero we're done.
|
||||
if len == 0 {
|
||||
break;
|
||||
}
|
||||
|
||||
// Append the delimiter to our output buffer first.
|
||||
outstr.push_str(delim);
|
||||
|
||||
// Extract the actual ASCII bytes for this label and append them
|
||||
// to the output buffer.
|
||||
let str_buffer = self.get_range(pos, len as usize)?;
|
||||
outstr.push_str(&String::from_utf8_lossy(str_buffer).to_lowercase());
|
||||
|
||||
delim = ".";
|
||||
|
||||
// Move forward the full length of the label.
|
||||
pos += len as usize;
|
||||
}
|
||||
}
|
||||
|
||||
if !jumped {
|
||||
self.seek(pos)?;
|
||||
@ -386,19 +425,19 @@ fn main() -> Result<()> {
|
||||
f.read(&mut buffer.buf)?;
|
||||
|
||||
let packet = DnsPacket::from_buffer(&mut buffer)?;
|
||||
println!("{:?}", packet.header);
|
||||
println!("{:#?}", packet.header);
|
||||
|
||||
for q in packet.questions {
|
||||
println!("{:?}", q);
|
||||
println!("{:#?}", q);
|
||||
}
|
||||
for rec in packet.answers {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
for rec in packet.authorities {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
for rec in packet.resources {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
|
@ -164,9 +164,7 @@ impl BytePacketBuffer {
|
||||
}
|
||||
|
||||
fn write_qname(&mut self, qname: &str) -> Result<()> {
|
||||
let split_str = qname.split('.').collect::<Vec<&str>>();
|
||||
|
||||
for label in split_str {
|
||||
for label in qname.split('.') {
|
||||
let len = label.len();
|
||||
if len > 0x34 {
|
||||
return Err("Single label exceeds 63 characters of length".into());
|
||||
@ -521,12 +519,18 @@ impl DnsPacket {
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let qname = "www.yahoo.com";
|
||||
// Perform an A query for google.com
|
||||
let qname = "google.com";
|
||||
let qtype = QueryType::A;
|
||||
|
||||
// Using googles public DNS server
|
||||
let server = ("8.8.8.8", 53);
|
||||
|
||||
// Bind a UDP socket to an arbitrary port
|
||||
let socket = UdpSocket::bind(("0.0.0.0", 43210))?;
|
||||
|
||||
// Build our query packet. It's important that we remember to set the
|
||||
// `recursion_desired` flag. As noted earlier, the packet id is arbitrary.
|
||||
let mut packet = DnsPacket::new();
|
||||
|
||||
packet.header.id = 6666;
|
||||
@ -536,27 +540,34 @@ fn main() -> Result<()> {
|
||||
.questions
|
||||
.push(DnsQuestion::new(qname.to_string(), qtype));
|
||||
|
||||
// Use our new write method to write the packet to a buffer...
|
||||
let mut req_buffer = BytePacketBuffer::new();
|
||||
packet.write(&mut req_buffer)?;
|
||||
|
||||
// ...and send it off to the server using our socket:
|
||||
socket.send_to(&req_buffer.buf[0..req_buffer.pos], server)?;
|
||||
|
||||
// To prepare for receiving the response, we'll create a new `BytePacketBuffer`,
|
||||
// and ask the socket to write the response directly into our buffer.
|
||||
let mut res_buffer = BytePacketBuffer::new();
|
||||
socket.recv_from(&mut res_buffer.buf)?;
|
||||
|
||||
// As per the previous section, `DnsPacket::from_buffer()` is then used to
|
||||
// actually parse the packet after which we can print the response.
|
||||
let res_packet = DnsPacket::from_buffer(&mut res_buffer)?;
|
||||
println!("{:?}", res_packet.header);
|
||||
println!("{:#?}", res_packet.header);
|
||||
|
||||
for q in res_packet.questions {
|
||||
println!("{:?}", q);
|
||||
println!("{:#?}", q);
|
||||
}
|
||||
for rec in res_packet.answers {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
for rec in res_packet.authorities {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
for rec in res_packet.resources {
|
||||
println!("{:?}", rec);
|
||||
println!("{:#?}", rec);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
|
@ -164,9 +164,7 @@ impl BytePacketBuffer {
|
||||
}
|
||||
|
||||
fn write_qname(&mut self, qname: &str) -> Result<()> {
|
||||
let split_str = qname.split('.').collect::<Vec<&str>>();
|
||||
|
||||
for label in split_str {
|
||||
for label in qname.split('.') {
|
||||
let len = label.len();
|
||||
if len > 0x34 {
|
||||
return Err("Single label exceeds 63 characters of length".into());
|
||||
|
@ -164,9 +164,7 @@ impl BytePacketBuffer {
|
||||
}
|
||||
|
||||
fn write_qname(&mut self, qname: &str) -> Result<()> {
|
||||
let split_str = qname.split('.').collect::<Vec<&str>>();
|
||||
|
||||
for label in split_str {
|
||||
for label in qname.split('.') {
|
||||
let len = label.len();
|
||||
if len > 0x34 {
|
||||
return Err("Single label exceeds 63 characters of length".into());
|
||||
@ -714,11 +712,17 @@ fn lookup(qname: &str, qtype: QueryType, server: (&str, u16)) -> Result<DnsPacke
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
// Forward queries to Google's public DNS
|
||||
let server = ("8.8.8.8", 53);
|
||||
|
||||
// Bind an UDP socket on port 2053
|
||||
let socket = UdpSocket::bind(("0.0.0.0", 2053))?;
|
||||
|
||||
// For now, queries are handled sequentially, so an infinite loop for servicing
|
||||
// requests is initiated.
|
||||
loop {
|
||||
// With a socket ready, we can go ahead and read a packet. This will
|
||||
// block until one is received.
|
||||
let mut req_buffer = BytePacketBuffer::new();
|
||||
let (_, src) = match socket.recv_from(&mut req_buffer.buf) {
|
||||
Ok(x) => x,
|
||||
@ -728,6 +732,16 @@ fn main() -> Result<()> {
|
||||
}
|
||||
};
|
||||
|
||||
// Here we use match to safely unwrap the `Result`. If everything's as expected,
|
||||
// the raw bytes are simply returned, and if not it'll abort by restarting the
|
||||
// loop and waiting for the next request. The `recv_from` function will write the
|
||||
// data into the provided buffer, and return the length of the data read as well
|
||||
// as the source address. We're not interested in the length, but we need to keep
|
||||
// track of the source in order to send our reply later on.
|
||||
|
||||
// Next, `DnsPacket::from_buffer` is used to parse the raw bytes into
|
||||
// a `DnsPacket`. It uses the same error handling idiom as the previous statement.
|
||||
|
||||
let request = match DnsPacket::from_buffer(&mut req_buffer) {
|
||||
Ok(x) => x,
|
||||
Err(e) => {
|
||||
@ -736,18 +750,29 @@ fn main() -> Result<()> {
|
||||
}
|
||||
};
|
||||
|
||||
// Create and initialize the response packet
|
||||
let mut packet = DnsPacket::new();
|
||||
packet.header.id = request.header.id;
|
||||
packet.header.recursion_desired = true;
|
||||
packet.header.recursion_available = true;
|
||||
packet.header.response = true;
|
||||
|
||||
// Being mindful of how unreliable input data from arbitrary senders can be, we
|
||||
// need make sure that a question is actually present. If not, we return `FORMERR`
|
||||
// to indicate that the sender made something wrong.
|
||||
if request.questions.is_empty() {
|
||||
packet.header.rescode = ResultCode::FORMERR;
|
||||
} else {
|
||||
}
|
||||
// Usually a question will be present, though.
|
||||
else {
|
||||
let question = &request.questions[0];
|
||||
println!("Received query: {:?}", question);
|
||||
|
||||
// Since all is set up and as expected, the query can be forwarded to the target
|
||||
// server. There's always the possibility that the query will fail, in which case
|
||||
// the `SERVFAIL` response code is set to indicate as much to the client. If
|
||||
// rather everything goes as planned, the question and response records as copied
|
||||
// into our response packet.
|
||||
if let Ok(result) = lookup(&question.name, question.qtype, server) {
|
||||
packet.questions.push(question.clone());
|
||||
packet.header.rescode = result.header.rescode;
|
||||
@ -769,6 +794,7 @@ fn main() -> Result<()> {
|
||||
}
|
||||
}
|
||||
|
||||
// The only thing remaining is to encode our response and send it off!
|
||||
let mut res_buffer = BytePacketBuffer::new();
|
||||
match packet.write(&mut res_buffer) {
|
||||
Ok(_) => {}
|
||||
|
@ -164,9 +164,7 @@ impl BytePacketBuffer {
|
||||
}
|
||||
|
||||
fn write_qname(&mut self, qname: &str) -> Result<()> {
|
||||
let split_str = qname.split('.').collect::<Vec<&str>>();
|
||||
|
||||
for label in split_str {
|
||||
for label in qname.split('.') {
|
||||
let len = label.len();
|
||||
if len > 0x34 {
|
||||
return Err("Single label exceeds 63 characters of length".into());
|
||||
@ -690,84 +688,69 @@ impl DnsPacket {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// It's useful to be able to pick a random A record from a packet. When we
|
||||
/// get multiple IP's for a single name, it doesn't matter which one we
|
||||
/// choose, so in those cases we can now pick one at random.
|
||||
pub fn get_random_a(&self) -> Option<String> {
|
||||
if !self.answers.is_empty() {
|
||||
let a_record = &self.answers[0];
|
||||
if let DnsRecord::A { ref addr, .. } = *a_record {
|
||||
return Some(addr.to_string());
|
||||
}
|
||||
self.answers
|
||||
.iter()
|
||||
.filter_map(|record| match record {
|
||||
DnsRecord::A { ref addr, .. } => Some(addr.to_string()),
|
||||
_ => None,
|
||||
})
|
||||
.next()
|
||||
}
|
||||
|
||||
None
|
||||
/// A helper function which returns an iterator over all name servers in
|
||||
/// the authorities section, represented as (domain, host) tuples
|
||||
fn get_ns<'a>(&'a self, qname: &'a str) -> impl Iterator<Item = (&'a str, &'a str)> {
|
||||
self.authorities
|
||||
.iter()
|
||||
// In practice, these are always NS records in well formed packages.
|
||||
// Convert the NS records to a tuple which has only the data we need
|
||||
// to make it easy to work with.
|
||||
.filter_map(|record| match record {
|
||||
DnsRecord::NS { domain, host, .. } => Some((domain.as_str(), host.as_str())),
|
||||
_ => None,
|
||||
})
|
||||
// Discard servers which aren't authoritative to our query
|
||||
.filter(move |(domain, _)| qname.ends_with(*domain))
|
||||
}
|
||||
|
||||
/// We'll use the fact that name servers often bundle the corresponding
|
||||
/// A records when replying to an NS query to implement a function that
|
||||
/// returns the actual IP for an NS record if possible.
|
||||
pub fn get_resolved_ns(&self, qname: &str) -> Option<String> {
|
||||
let mut new_authorities = Vec::new();
|
||||
for auth in &self.authorities {
|
||||
if let DnsRecord::NS {
|
||||
ref domain,
|
||||
ref host,
|
||||
..
|
||||
} = *auth
|
||||
{
|
||||
if !qname.ends_with(domain) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for rsrc in &self.resources {
|
||||
if let DnsRecord::A {
|
||||
ref domain,
|
||||
ref addr,
|
||||
ttl,
|
||||
} = *rsrc
|
||||
{
|
||||
if domain != host {
|
||||
continue;
|
||||
}
|
||||
|
||||
let rec = DnsRecord::A {
|
||||
domain: host.clone(),
|
||||
addr: *addr,
|
||||
ttl: ttl,
|
||||
};
|
||||
|
||||
new_authorities.push(rec);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if !new_authorities.is_empty() {
|
||||
if let DnsRecord::A { addr, .. } = new_authorities[0] {
|
||||
return Some(addr.to_string());
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
// Get an iterator over the nameservers in the authorities section
|
||||
self.get_ns(qname)
|
||||
// Now we need to look for a matching A record in the additional
|
||||
// section. Since we just want the first valid record, we can just
|
||||
// build a stream of matching records.
|
||||
.flat_map(|(_, host)| {
|
||||
self.resources
|
||||
.iter()
|
||||
// Filter for A records where the domain match the host
|
||||
// of the NS record that we are currently processing
|
||||
.filter_map(move |record| match record {
|
||||
DnsRecord::A { domain, addr, .. } if domain == host => Some(addr),
|
||||
_ => None,
|
||||
})
|
||||
})
|
||||
.map(|addr| addr.to_string())
|
||||
// Finally, pick the first valid entry
|
||||
.next()
|
||||
}
|
||||
|
||||
/// However, not all name servers are as that nice. In certain cases there won't
|
||||
/// be any A records in the additional section, and we'll have to perform *another*
|
||||
/// lookup in the midst. For this, we introduce a method for returning the host
|
||||
/// name of an appropriate name server.
|
||||
pub fn get_unresolved_ns(&self, qname: &str) -> Option<String> {
|
||||
let mut new_authorities = Vec::new();
|
||||
for auth in &self.authorities {
|
||||
if let DnsRecord::NS {
|
||||
ref domain,
|
||||
ref host,
|
||||
..
|
||||
} = *auth
|
||||
{
|
||||
if !qname.ends_with(domain) {
|
||||
continue;
|
||||
}
|
||||
|
||||
new_authorities.push(host);
|
||||
}
|
||||
}
|
||||
|
||||
if !new_authorities.is_empty() {
|
||||
return Some(new_authorities[0].clone());
|
||||
}
|
||||
|
||||
None
|
||||
// Get an iterator over the nameservers in the authorities section
|
||||
self.get_ns(qname)
|
||||
.map(|(_, host)| host.to_string())
|
||||
// Finally, pick the first valid entry
|
||||
.next()
|
||||
}
|
||||
}
|
||||
|
||||
@ -794,45 +777,53 @@ fn lookup(qname: &str, qtype: QueryType, server: (&str, u16)) -> Result<DnsPacke
|
||||
}
|
||||
|
||||
fn recursive_lookup(qname: &str, qtype: QueryType) -> Result<DnsPacket> {
|
||||
// For now we're always starting with *a.root-servers.net*.
|
||||
let mut ns = "198.41.0.4".to_string();
|
||||
|
||||
// Start querying name servers
|
||||
// Since it might take an arbitrary number of steps, we enter an unbounded loop.
|
||||
loop {
|
||||
println!("attempting lookup of {:?} {} with ns {}", qtype, qname, ns);
|
||||
|
||||
// The next step is to send the query to the active server.
|
||||
let ns_copy = ns.clone();
|
||||
|
||||
let server = (ns_copy.as_str(), 53);
|
||||
let response = lookup(qname, qtype.clone(), server)?;
|
||||
|
||||
// If we've got an actual answer, we're done!
|
||||
// If there are entries in the answer section, and no errors, we are done!
|
||||
if !response.answers.is_empty() && response.header.rescode == ResultCode::NOERROR {
|
||||
return Ok(response.clone());
|
||||
}
|
||||
|
||||
// We might also get a `NXDOMAIN` reply, which is the authoritative name servers
|
||||
// way of telling us that the name doesn't exist.
|
||||
if response.header.rescode == ResultCode::NXDOMAIN {
|
||||
return Ok(response.clone());
|
||||
}
|
||||
|
||||
// Otherwise, try to find a new nameserver based on NS and a
|
||||
// corresponding A record in the additional section
|
||||
// Otherwise, we'll try to find a new nameserver based on NS and a corresponding A
|
||||
// record in the additional section. If this succeeds, we can switch name server
|
||||
// and retry the loop.
|
||||
if let Some(new_ns) = response.get_resolved_ns(qname) {
|
||||
// If there is such a record, we can retry the loop with that NS
|
||||
ns = new_ns.clone();
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// If not, we'll have to resolve the ip of a NS record
|
||||
// If not, we'll have to resolve the ip of a NS record. If no NS records exist,
|
||||
// we'll go with what the last server told us.
|
||||
let new_ns_name = match response.get_unresolved_ns(qname) {
|
||||
Some(x) => x,
|
||||
None => return Ok(response.clone()),
|
||||
};
|
||||
|
||||
// Recursively resolve the NS
|
||||
// Here we go down the rabbit hole by starting _another_ lookup sequence in the
|
||||
// midst of our current one. Hopefully, this will give us the IP of an appropriate
|
||||
// name server.
|
||||
let recursive_response = recursive_lookup(&new_ns_name, QueryType::A)?;
|
||||
|
||||
// Pick a random IP and restart
|
||||
// Finally, we pick a random ip from the result, and restart the loop. If no such
|
||||
// record is available, we again return the last result we got.
|
||||
if let Some(new_ns) = recursive_response.get_random_a() {
|
||||
ns = new_ns.clone();
|
||||
} else {
|
||||
|
Loading…
Reference in New Issue
Block a user