use std::net::UdpSocket; use std::net::{Ipv4Addr, Ipv6Addr}; type Error = Box; type Result = std::result::Result; pub struct BytePacketBuffer { pub buf: [u8; 512], pub pos: usize, } impl BytePacketBuffer { pub fn new() -> BytePacketBuffer { BytePacketBuffer { buf: [0; 512], pos: 0, } } fn pos(&self) -> usize { self.pos } fn step(&mut self, steps: usize) -> Result<()> { self.pos += steps; Ok(()) } fn seek(&mut self, pos: usize) -> Result<()> { self.pos = pos; Ok(()) } fn read(&mut self) -> Result { if self.pos >= 512 { return Err("End of buffer".into()); } let res = self.buf[self.pos]; self.pos += 1; Ok(res) } fn get(&mut self, pos: usize) -> Result { if pos >= 512 { return Err("End of buffer".into()); } Ok(self.buf[pos]) } fn get_range(&mut self, start: usize, len: usize) -> Result<&[u8]> { if start + len >= 512 { return Err("End of buffer".into()); } Ok(&self.buf[start..start + len as usize]) } fn read_u16(&mut self) -> Result { let res = ((self.read()? as u16) << 8) | (self.read()? as u16); Ok(res) } fn read_u32(&mut self) -> Result { let res = ((self.read()? as u32) << 24) | ((self.read()? as u32) << 16) | ((self.read()? as u32) << 8) | ((self.read()? as u32) << 0); Ok(res) } fn read_qname(&mut self, outstr: &mut String) -> Result<()> { let mut pos = self.pos(); let mut jumped = false; let mut delim = ""; let max_jumps = 5; let mut jumps_performed = 0; loop { // Dns Packets are untrusted data, so we need to be paranoid. Someone // can craft a packet with a cycle in the jump instructions. This guards // against such packets. if jumps_performed > max_jumps { return Err(format!("Limit of {} jumps exceeded", max_jumps).into()); } let len = self.get(pos)?; // A two byte sequence, where the two highest bits of the first byte is // set, represents a offset relative to the start of the buffer. We // handle this by jumping to the offset, setting a flag to indicate // that we shouldn't update the shared buffer position once done. if (len & 0xC0) == 0xC0 { // When a jump is performed, we only modify the shared buffer // position once, and avoid making the change later on. if !jumped { self.seek(pos + 2)?; } let b2 = self.get(pos + 1)? as u16; let offset = (((len as u16) ^ 0xC0) << 8) | b2; pos = offset as usize; jumped = true; jumps_performed += 1; continue; } pos += 1; // Names are terminated by an empty label of length 0 if len == 0 { break; } outstr.push_str(delim); let str_buffer = self.get_range(pos, len as usize)?; outstr.push_str(&String::from_utf8_lossy(str_buffer).to_lowercase()); delim = "."; pos += len as usize; } if !jumped { self.seek(pos)?; } Ok(()) } fn write(&mut self, val: u8) -> Result<()> { if self.pos >= 512 { return Err("End of buffer".into()); } self.buf[self.pos] = val; self.pos += 1; Ok(()) } fn write_u8(&mut self, val: u8) -> Result<()> { self.write(val)?; Ok(()) } fn write_u16(&mut self, val: u16) -> Result<()> { self.write((val >> 8) as u8)?; self.write((val & 0xFF) as u8)?; Ok(()) } fn write_u32(&mut self, val: u32) -> Result<()> { self.write(((val >> 24) & 0xFF) as u8)?; self.write(((val >> 16) & 0xFF) as u8)?; self.write(((val >> 8) & 0xFF) as u8)?; self.write(((val >> 0) & 0xFF) as u8)?; Ok(()) } fn write_qname(&mut self, qname: &str) -> Result<()> { for label in qname.split('.') { let len = label.len(); if len > 0x3f { return Err("Single label exceeds 63 characters of length".into()); } self.write_u8(len as u8)?; for b in label.as_bytes() { self.write_u8(*b)?; } } self.write_u8(0)?; Ok(()) } fn set(&mut self, pos: usize, val: u8) -> Result<()> { self.buf[pos] = val; Ok(()) } fn set_u16(&mut self, pos: usize, val: u16) -> Result<()> { self.set(pos, (val >> 8) as u8)?; self.set(pos + 1, (val & 0xFF) as u8)?; Ok(()) } } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum ResultCode { NOERROR = 0, FORMERR = 1, SERVFAIL = 2, NXDOMAIN = 3, NOTIMP = 4, REFUSED = 5, } impl ResultCode { pub fn from_num(num: u8) -> ResultCode { match num { 1 => ResultCode::FORMERR, 2 => ResultCode::SERVFAIL, 3 => ResultCode::NXDOMAIN, 4 => ResultCode::NOTIMP, 5 => ResultCode::REFUSED, 0 | _ => ResultCode::NOERROR, } } } #[derive(Clone, Debug)] pub struct DnsHeader { pub id: u16, // 16 bits pub recursion_desired: bool, // 1 bit pub truncated_message: bool, // 1 bit pub authoritative_answer: bool, // 1 bit pub opcode: u8, // 4 bits pub response: bool, // 1 bit pub rescode: ResultCode, // 4 bits pub checking_disabled: bool, // 1 bit pub authed_data: bool, // 1 bit pub z: bool, // 1 bit pub recursion_available: bool, // 1 bit pub questions: u16, // 16 bits pub answers: u16, // 16 bits pub authoritative_entries: u16, // 16 bits pub resource_entries: u16, // 16 bits } impl DnsHeader { pub fn new() -> DnsHeader { DnsHeader { id: 0, recursion_desired: false, truncated_message: false, authoritative_answer: false, opcode: 0, response: false, rescode: ResultCode::NOERROR, checking_disabled: false, authed_data: false, z: false, recursion_available: false, questions: 0, answers: 0, authoritative_entries: 0, resource_entries: 0, } } pub fn read(&mut self, buffer: &mut BytePacketBuffer) -> Result<()> { self.id = buffer.read_u16()?; let flags = buffer.read_u16()?; let a = (flags >> 8) as u8; let b = (flags & 0xFF) as u8; self.recursion_desired = (a & (1 << 0)) > 0; self.truncated_message = (a & (1 << 1)) > 0; self.authoritative_answer = (a & (1 << 2)) > 0; self.opcode = (a >> 3) & 0x0F; self.response = (a & (1 << 7)) > 0; self.rescode = ResultCode::from_num(b & 0x0F); self.checking_disabled = (b & (1 << 4)) > 0; self.authed_data = (b & (1 << 5)) > 0; self.z = (b & (1 << 6)) > 0; self.recursion_available = (b & (1 << 7)) > 0; self.questions = buffer.read_u16()?; self.answers = buffer.read_u16()?; self.authoritative_entries = buffer.read_u16()?; self.resource_entries = buffer.read_u16()?; // Return the constant header size Ok(()) } pub fn write(&self, buffer: &mut BytePacketBuffer) -> Result<()> { buffer.write_u16(self.id)?; buffer.write_u8( (self.recursion_desired as u8) | ((self.truncated_message as u8) << 1) | ((self.authoritative_answer as u8) << 2) | (self.opcode << 3) | ((self.response as u8) << 7) as u8, )?; buffer.write_u8( (self.rescode as u8) | ((self.checking_disabled as u8) << 4) | ((self.authed_data as u8) << 5) | ((self.z as u8) << 6) | ((self.recursion_available as u8) << 7), )?; buffer.write_u16(self.questions)?; buffer.write_u16(self.answers)?; buffer.write_u16(self.authoritative_entries)?; buffer.write_u16(self.resource_entries)?; Ok(()) } } #[derive(PartialEq, Eq, Debug, Clone, Hash, Copy)] pub enum QueryType { UNKNOWN(u16), A, // 1 NS, // 2 CNAME, // 5 MX, // 15 AAAA, // 28 } impl QueryType { pub fn to_num(&self) -> u16 { match *self { QueryType::UNKNOWN(x) => x, QueryType::A => 1, QueryType::NS => 2, QueryType::CNAME => 5, QueryType::MX => 15, QueryType::AAAA => 28, } } pub fn from_num(num: u16) -> QueryType { match num { 1 => QueryType::A, 2 => QueryType::NS, 5 => QueryType::CNAME, 15 => QueryType::MX, 28 => QueryType::AAAA, _ => QueryType::UNKNOWN(num), } } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct DnsQuestion { pub name: String, pub qtype: QueryType, } impl DnsQuestion { pub fn new(name: String, qtype: QueryType) -> DnsQuestion { DnsQuestion { name, qtype } } pub fn read(&mut self, buffer: &mut BytePacketBuffer) -> Result<()> { buffer.read_qname(&mut self.name)?; self.qtype = QueryType::from_num(buffer.read_u16()?); // qtype let _ = buffer.read_u16()?; // class Ok(()) } pub fn write(&self, buffer: &mut BytePacketBuffer) -> Result<()> { buffer.write_qname(&self.name)?; let typenum = self.qtype.to_num(); buffer.write_u16(typenum)?; buffer.write_u16(1)?; Ok(()) } } #[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)] #[allow(dead_code)] pub enum DnsRecord { UNKNOWN { domain: String, qtype: u16, data_len: u16, ttl: u32, }, // 0 A { domain: String, addr: Ipv4Addr, ttl: u32, }, // 1 NS { domain: String, host: String, ttl: u32, }, // 2 CNAME { domain: String, host: String, ttl: u32, }, // 5 MX { domain: String, priority: u16, host: String, ttl: u32, }, // 15 AAAA { domain: String, addr: Ipv6Addr, ttl: u32, }, // 28 } impl DnsRecord { pub fn read(buffer: &mut BytePacketBuffer) -> Result { let mut domain = String::new(); buffer.read_qname(&mut domain)?; let qtype_num = buffer.read_u16()?; let qtype = QueryType::from_num(qtype_num); let _ = buffer.read_u16()?; let ttl = buffer.read_u32()?; let data_len = buffer.read_u16()?; match qtype { QueryType::A => { let raw_addr = buffer.read_u32()?; let addr = Ipv4Addr::new( ((raw_addr >> 24) & 0xFF) as u8, ((raw_addr >> 16) & 0xFF) as u8, ((raw_addr >> 8) & 0xFF) as u8, ((raw_addr >> 0) & 0xFF) as u8, ); Ok(DnsRecord::A { domain, addr, ttl }) } QueryType::AAAA => { let raw_addr1 = buffer.read_u32()?; let raw_addr2 = buffer.read_u32()?; let raw_addr3 = buffer.read_u32()?; let raw_addr4 = buffer.read_u32()?; let addr = Ipv6Addr::new( ((raw_addr1 >> 16) & 0xFFFF) as u16, ((raw_addr1 >> 0) & 0xFFFF) as u16, ((raw_addr2 >> 16) & 0xFFFF) as u16, ((raw_addr2 >> 0) & 0xFFFF) as u16, ((raw_addr3 >> 16) & 0xFFFF) as u16, ((raw_addr3 >> 0) & 0xFFFF) as u16, ((raw_addr4 >> 16) & 0xFFFF) as u16, ((raw_addr4 >> 0) & 0xFFFF) as u16, ); Ok(DnsRecord::AAAA { domain, addr, ttl }) } QueryType::NS => { let mut ns = String::new(); buffer.read_qname(&mut ns)?; Ok(DnsRecord::NS { domain, host: ns, ttl, }) } QueryType::CNAME => { let mut cname = String::new(); buffer.read_qname(&mut cname)?; Ok(DnsRecord::CNAME { domain, host: cname, ttl, }) } QueryType::MX => { let priority = buffer.read_u16()?; let mut mx = String::new(); buffer.read_qname(&mut mx)?; Ok(DnsRecord::MX { domain, priority, host: mx, ttl, }) } QueryType::UNKNOWN(_) => { buffer.step(data_len as usize)?; Ok(DnsRecord::UNKNOWN { domain, qtype: qtype_num, data_len, ttl, }) } } } pub fn write(&self, buffer: &mut BytePacketBuffer) -> Result { let start_pos = buffer.pos(); match *self { DnsRecord::A { ref domain, ref addr, ttl, } => { buffer.write_qname(domain)?; buffer.write_u16(QueryType::A.to_num())?; buffer.write_u16(1)?; buffer.write_u32(ttl)?; buffer.write_u16(4)?; let octets = addr.octets(); buffer.write_u8(octets[0])?; buffer.write_u8(octets[1])?; buffer.write_u8(octets[2])?; buffer.write_u8(octets[3])?; } DnsRecord::NS { ref domain, ref host, ttl, } => { buffer.write_qname(domain)?; buffer.write_u16(QueryType::NS.to_num())?; buffer.write_u16(1)?; buffer.write_u32(ttl)?; let pos = buffer.pos(); buffer.write_u16(0)?; buffer.write_qname(host)?; let size = buffer.pos() - (pos + 2); buffer.set_u16(pos, size as u16)?; } DnsRecord::CNAME { ref domain, ref host, ttl, } => { buffer.write_qname(domain)?; buffer.write_u16(QueryType::CNAME.to_num())?; buffer.write_u16(1)?; buffer.write_u32(ttl)?; let pos = buffer.pos(); buffer.write_u16(0)?; buffer.write_qname(host)?; let size = buffer.pos() - (pos + 2); buffer.set_u16(pos, size as u16)?; } DnsRecord::MX { ref domain, priority, ref host, ttl, } => { buffer.write_qname(domain)?; buffer.write_u16(QueryType::MX.to_num())?; buffer.write_u16(1)?; buffer.write_u32(ttl)?; let pos = buffer.pos(); buffer.write_u16(0)?; buffer.write_u16(priority)?; buffer.write_qname(host)?; let size = buffer.pos() - (pos + 2); buffer.set_u16(pos, size as u16)?; } DnsRecord::AAAA { ref domain, ref addr, ttl, } => { buffer.write_qname(domain)?; buffer.write_u16(QueryType::AAAA.to_num())?; buffer.write_u16(1)?; buffer.write_u32(ttl)?; buffer.write_u16(16)?; for octet in &addr.segments() { buffer.write_u16(*octet)?; } } DnsRecord::UNKNOWN { .. } => { println!("Skipping record: {:?}", self); } } Ok(buffer.pos() - start_pos) } } #[derive(Clone, Debug)] pub struct DnsPacket { pub header: DnsHeader, pub questions: Vec, pub answers: Vec, pub authorities: Vec, pub resources: Vec, } impl DnsPacket { pub fn new() -> DnsPacket { DnsPacket { header: DnsHeader::new(), questions: Vec::new(), answers: Vec::new(), authorities: Vec::new(), resources: Vec::new(), } } pub fn from_buffer(buffer: &mut BytePacketBuffer) -> Result { let mut result = DnsPacket::new(); result.header.read(buffer)?; for _ in 0..result.header.questions { let mut question = DnsQuestion::new(String::new(), QueryType::UNKNOWN(0)); question.read(buffer)?; result.questions.push(question); } for _ in 0..result.header.answers { let rec = DnsRecord::read(buffer)?; result.answers.push(rec); } for _ in 0..result.header.authoritative_entries { let rec = DnsRecord::read(buffer)?; result.authorities.push(rec); } for _ in 0..result.header.resource_entries { let rec = DnsRecord::read(buffer)?; result.resources.push(rec); } Ok(result) } pub fn write(&mut self, buffer: &mut BytePacketBuffer) -> Result<()> { self.header.questions = self.questions.len() as u16; self.header.answers = self.answers.len() as u16; self.header.authoritative_entries = self.authorities.len() as u16; self.header.resource_entries = self.resources.len() as u16; self.header.write(buffer)?; for question in &self.questions { question.write(buffer)?; } for rec in &self.answers { rec.write(buffer)?; } for rec in &self.authorities { rec.write(buffer)?; } for rec in &self.resources { rec.write(buffer)?; } Ok(()) } } fn lookup(qname: &str, qtype: QueryType) -> Result { // Forward queries to Google's public DNS let server = ("8.8.8.8", 53); let socket = UdpSocket::bind(("0.0.0.0", 43210))?; let mut packet = DnsPacket::new(); packet.header.id = 6666; packet.header.questions = 1; packet.header.recursion_desired = true; packet .questions .push(DnsQuestion::new(qname.to_string(), qtype)); let mut req_buffer = BytePacketBuffer::new(); packet.write(&mut req_buffer)?; socket.send_to(&req_buffer.buf[0..req_buffer.pos], server)?; let mut res_buffer = BytePacketBuffer::new(); socket.recv_from(&mut res_buffer.buf)?; DnsPacket::from_buffer(&mut res_buffer) } /// Handle a single incoming packet fn handle_query(socket: &UdpSocket) -> Result<()> { // With a socket ready, we can go ahead and read a packet. This will // block until one is received. let mut req_buffer = BytePacketBuffer::new(); // The `recv_from` function will write the data into the provided buffer, // and return the length of the data read as well as the source address. // We're not interested in the length, but we need to keep track of the // source in order to send our reply later on. let (_, src) = socket.recv_from(&mut req_buffer.buf)?; // Next, `DnsPacket::from_buffer` is used to parse the raw bytes into // a `DnsPacket`. let mut request = DnsPacket::from_buffer(&mut req_buffer)?; // Create and initialize the response packet let mut packet = DnsPacket::new(); packet.header.id = request.header.id; packet.header.recursion_desired = true; packet.header.recursion_available = true; packet.header.response = true; // In the normal case, exactly one question is present if let Some(question) = request.questions.pop() { println!("Received query: {:?}", question); // Since all is set up and as expected, the query can be forwarded to the // target server. There's always the possibility that the query will // fail, in which case the `SERVFAIL` response code is set to indicate // as much to the client. If rather everything goes as planned, the // question and response records as copied into our response packet. if let Ok(result) = lookup(&question.name, question.qtype) { packet.questions.push(question); packet.header.rescode = result.header.rescode; for rec in result.answers { println!("Answer: {:?}", rec); packet.answers.push(rec); } for rec in result.authorities { println!("Authority: {:?}", rec); packet.authorities.push(rec); } for rec in result.resources { println!("Resource: {:?}", rec); packet.resources.push(rec); } } else { packet.header.rescode = ResultCode::SERVFAIL; } } // Being mindful of how unreliable input data from arbitrary senders can be, we // need make sure that a question is actually present. If not, we return `FORMERR` // to indicate that the sender made something wrong. else { packet.header.rescode = ResultCode::FORMERR; } // The only thing remaining is to encode our response and send it off! let mut res_buffer = BytePacketBuffer::new(); packet.write(&mut res_buffer)?; let len = res_buffer.pos(); let data = res_buffer.get_range(0, len)?; socket.send_to(data, src)?; Ok(()) } fn main() -> Result<()> { // Bind an UDP socket on port 2053 let socket = UdpSocket::bind(("0.0.0.0", 2053))?; // For now, queries are handled sequentially, so an infinite loop for servicing // requests is initiated. loop { match handle_query(&socket) { Ok(_) => {} Err(e) => eprintln!("An error occurred: {}", e), } } }