Files
Mindustry/tests/src/test/java/PowerTests.java

139 lines
10 KiB
Java
Raw Normal View History

import com.badlogic.gdx.math.MathUtils;
2018-11-20 20:58:46 +01:00
import io.anuke.mindustry.Vars;
import io.anuke.mindustry.content.blocks.PowerBlocks;
import io.anuke.mindustry.content.blocks.ProductionBlocks;
import io.anuke.mindustry.core.ContentLoader;
import io.anuke.mindustry.world.Tile;
import io.anuke.mindustry.world.blocks.power.PowerGraph;
import org.junit.jupiter.api.*;
import org.junit.jupiter.params.provider.ValueSource;
import org.junit.jupiter.params.ParameterizedTest;
2018-11-20 20:58:46 +01:00
import static org.junit.jupiter.api.Assertions.assertEquals;
2018-11-20 20:58:46 +01:00
import static org.junit.jupiter.api.Assertions.assertTrue;
import static org.junit.jupiter.api.Assumptions.assumeTrue;
import static org.junit.jupiter.api.DynamicTest.dynamicTest;
2018-11-20 20:58:46 +01:00
public class PowerTests extends PowerTestFixture{
2018-11-20 20:58:46 +01:00
@BeforeAll
static void initializeDependencies(){
Vars.content = new ContentLoader();
Vars.content.load();
Vars.threads = new FakeThreadHandler();
2018-11-20 20:58:46 +01:00
}
@BeforeEach
void initTest(){
}
@Nested
class PowerGraphTests{
/** Tests the satisfaction of a single consumer after a single update of the power graph which contains a single producer.
*
* Assumption: When the consumer requests zero power, satisfaction does not change. Default is 0.0f.
*/
@TestFactory
DynamicTest[] testDirectConsumption(){
return new DynamicTest[]{
// Note: Unfortunately, the display names are not yet output through gradle. See https://github.com/gradle/gradle/issues/5975
// That's why we inject the description into the test method for now.
dynamicTest("01", () -> test_directConsumptionCalculation(0.0f, 1.0f, 0.0f, "0.0 produced, 1.0 consumed (no power available)")),
dynamicTest("02", () -> test_directConsumptionCalculation(0.0f, 0.0f, 0.0f, "0.0 produced, 0.0 consumed (no power anywhere)")),
dynamicTest("03", () -> test_directConsumptionCalculation(1.0f, 0.0f, 0.0f, "1.0 produced, 0.0 consumed (no power requested)")),
dynamicTest("04", () -> test_directConsumptionCalculation(1.0f, 1.0f, 1.0f, "1.0 produced, 1.0 consumed (stable consumption)")),
dynamicTest("05", () -> test_directConsumptionCalculation(0.5f, 1.0f, 0.5f, "0.5 produced, 1.0 consumed (power shortage)")),
dynamicTest("06", () -> test_directConsumptionCalculation(1.0f, 0.5f, 1.0f, "1.0 produced, 0.5 consumed (power excess)")),
dynamicTest("07", () -> test_directConsumptionCalculation(0.09f, 0.09f - MathUtils.FLOAT_ROUNDING_ERROR / 10.0f, 1.0f, "floating point inaccuracy (stable consumption)"))
};
2018-11-20 20:58:46 +01:00
}
void test_directConsumptionCalculation(float producedPower, float requiredPower, float expectedSatisfaction, String parameterDescription){
Tile producerTile = createFakeTile(0, 0, createFakeProducerBlock(producedPower));
Tile directConsumerTile = createFakeTile(0, 1, createFakeDirectConsumer(requiredPower, 0.6f));
2018-11-20 20:58:46 +01:00
PowerGraph powerGraph = new PowerGraph();
powerGraph.add(producerTile);
powerGraph.add(directConsumerTile);
2018-11-20 20:58:46 +01:00
assumeTrue(MathUtils.isEqual(producedPower, powerGraph.getPowerProduced()));
assumeTrue(MathUtils.isEqual(requiredPower, powerGraph.getPowerNeeded()));
2018-11-20 20:58:46 +01:00
// Update and check for the expected power satisfaction of the consumer
powerGraph.update();
assertEquals(expectedSatisfaction, directConsumerTile.entity.power.satisfaction, MathUtils.FLOAT_ROUNDING_ERROR, parameterDescription + ": Satisfaction of direct consumer did not match");
2018-11-20 20:58:46 +01:00
}
/** Tests the satisfaction of a single buffered consumer after a single update of the power graph which contains a single producer. */
@TestFactory
DynamicTest[] testBufferedConsumption(){
return new DynamicTest[]{
// Note: powerPerTick may not be 0 in any of the test cases. This would equal a "ticksToFill" of infinite.
dynamicTest("01", () -> test_bufferedConsumptionCalculation(0.0f, 0.0f, 0.1f, 0.0f, 0.0f, "Empty Buffer, No power anywhere")),
dynamicTest("02", () -> test_bufferedConsumptionCalculation(0.0f, 1.0f, 0.1f, 0.0f, 0.0f, "Empty Buffer, No power provided")),
dynamicTest("03", () -> test_bufferedConsumptionCalculation(1.0f, 0.0f, 0.1f, 0.0f, 0.0f, "Empty Buffer, No power requested")),
dynamicTest("04", () -> test_bufferedConsumptionCalculation(1.0f, 1.0f, 1.0f, 0.0f, 1.0f, "Empty Buffer, Stable Power, One tick to fill")),
dynamicTest("05", () -> test_bufferedConsumptionCalculation(1.0f, 1.0f, 0.1f, 0.0f, 0.1f, "Empty Buffer, Stable Power, multiple ticks to fill")),
dynamicTest("06", () -> test_bufferedConsumptionCalculation(1.0f, 0.5f, 0.5f, 0.0f, 1.0f, "Empty Buffer, Power excess, one tick to fill")),
dynamicTest("07", () -> test_bufferedConsumptionCalculation(1.0f, 0.5f, 0.1f, 0.0f, 0.2f, "Empty Buffer, Power excess, multiple ticks to fill")),
dynamicTest("08", () -> test_bufferedConsumptionCalculation(0.5f, 1.0f, 1.0f, 0.0f, 0.5f, "Empty Buffer, Power shortage, one tick to fill")),
dynamicTest("09", () -> test_bufferedConsumptionCalculation(0.5f, 1.0f, 0.1f, 0.0f, 0.1f, "Empty Buffer, Power shortage, multiple ticks to fill")),
dynamicTest("10", () -> test_bufferedConsumptionCalculation(0.0f, 1.0f, 0.1f, 0.5f, 0.5f, "Unchanged buffer with no power produced")),
dynamicTest("11", () -> test_bufferedConsumptionCalculation(1.0f, 1.0f, 0.1f, 1.0f, 1.0f, "Unchanged buffer when already full")),
dynamicTest("12", () -> test_bufferedConsumptionCalculation(0.2f, 1.0f, 0.5f, 0.5f, 0.7f, "Half buffer, power shortage")),
dynamicTest("13", () -> test_bufferedConsumptionCalculation(1.0f, 1.0f, 0.5f, 0.7f, 1.0f, "Buffer does not get exceeded")),
dynamicTest("14", () -> test_bufferedConsumptionCalculation(1.0f, 1.0f, 0.5f, 0.5f, 1.0f, "Half buffer, filled with excess"))
};
}
void test_bufferedConsumptionCalculation(float producedPower, float maxBuffer, float powerPerTick, float initialSatisfaction, float expectedSatisfaction, String parameterDescription){
Tile producerTile = createFakeTile(0, 0, createFakeProducerBlock(producedPower));
Tile bufferedConsumerTile = createFakeTile(0, 1, createFakeBufferedConsumer(maxBuffer, maxBuffer > 0.0f ? maxBuffer/powerPerTick : 1.0f));
bufferedConsumerTile.entity.power.satisfaction = initialSatisfaction;
PowerGraph powerGraph = new PowerGraph();
powerGraph.add(producerTile);
powerGraph.add(bufferedConsumerTile);
assumeTrue(MathUtils.isEqual(producedPower, powerGraph.getPowerProduced()));
//assumeTrue(MathUtils.isEqual(Math.min(maxBuffer, powerPerTick), powerGraph.getPowerNeeded()));
// Update and check for the expected power satisfaction of the consumer
powerGraph.update();
assertEquals(expectedSatisfaction, bufferedConsumerTile.entity.power.satisfaction, MathUtils.FLOAT_ROUNDING_ERROR, parameterDescription + ": Satisfaction of buffered consumer did not match");
}
/** Tests the satisfaction of a single direct consumer after a single update of the power graph which contains a single producer and a single battery.
* The used battery is created with a maximum capacity of 100 and receives ten power per tick.
*/
@TestFactory
DynamicTest[] testDirectConsumptionWithBattery(){
return new DynamicTest[]{
dynamicTest("1", () -> test_directConsumptionWithBattery(10.0f, 0.0f, 0.0f, 10.0f, 0.0f, "Empty battery, no consumer")),
dynamicTest("2", () -> test_directConsumptionWithBattery(10.0f, 0.0f, 90.0f, 100.0f, 0.0f, "Battery full after update, no consumer")),
dynamicTest("3", () -> test_directConsumptionWithBattery(10.0f, 0.0f, 100.0f, 100.0f, 0.0f, "Full battery, no consumer")),
dynamicTest("4", () -> test_directConsumptionWithBattery(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, "No producer, no consumer, empty battery")),
dynamicTest("5", () -> test_directConsumptionWithBattery(0.0f, 0.0f, 100.0f, 100.0f, 0.0f, "No producer, no consumer, full battery")),
dynamicTest("6", () -> test_directConsumptionWithBattery(0.0f, 10.0f, 0.0f, 0.0f, 0.0f, "No producer, empty battery")),
dynamicTest("7", () -> test_directConsumptionWithBattery(0.0f, 10.0f, 100.0f, 90.0f, 1.0f, "No producer, full battery")),
dynamicTest("8", () -> test_directConsumptionWithBattery(0.0f, 10.0f, 5.0f, 0.0f, 0.5f, "No producer, low battery"))
};
}
void test_directConsumptionWithBattery(float producedPower, float requestedPower, float initialBatteryCapacity, float expectedBatteryCapacity, float expectedSatisfaction, String parameterDescription){
Tile producerTile = createFakeTile(0, 0, createFakeProducerBlock(producedPower));
Tile directConsumerTile = createFakeTile(0, 1, createFakeDirectConsumer(requestedPower, 0.6f));
float maxCapacity = 100f;
Tile batteryTile = createFakeTile(0, 2, createFakeBattery(maxCapacity, 10 ));
batteryTile.entity.power.satisfaction = initialBatteryCapacity / maxCapacity;
PowerGraph powerGraph = new PowerGraph();
powerGraph.add(producerTile);
powerGraph.add(directConsumerTile);
powerGraph.add(batteryTile);
powerGraph.update();
assertEquals(expectedBatteryCapacity, batteryTile.entity.power.satisfaction * maxCapacity, MathUtils.FLOAT_ROUNDING_ERROR, parameterDescription + ": Expected battery capacity did not match");
assertEquals(expectedSatisfaction, directConsumerTile.entity.power.satisfaction, MathUtils.FLOAT_ROUNDING_ERROR, parameterDescription + ": Satisfaction of direct consumer did not match");
}
}
2018-11-20 20:58:46 +01:00
}