mirror of
https://github.com/yairm210/Unciv.git
synced 2025-07-09 15:29:32 +07:00
Final performance improvements for the new algotihm, before we say 'goodnight sweet prince' - it underperforms drastically compared to current
This commit is contained in:
@ -1,3 +1,5 @@
|
||||
|
||||
|
||||
package com.unciv.logic.map.mapunit.movement
|
||||
|
||||
import com.badlogic.gdx.math.Vector2
|
||||
@ -31,13 +33,13 @@ class UnitMovement(val unit: MapUnit) {
|
||||
* If a tile can be reached within the turn, but it cannot be passed through, the total distance to it is set to unitMovement
|
||||
*/
|
||||
fun getDistanceToTilesWithinTurn(
|
||||
origin: Vector2,
|
||||
unitMovement: Float,
|
||||
considerZoneOfControl: Boolean = true,
|
||||
tilesToIgnore: HashSet<Tile>? = null,
|
||||
passThroughCache: HashMap<Tile, Boolean> = HashMap(),
|
||||
movementCostCache: HashMap<Pair<Tile, Tile>, Float> = HashMap()
|
||||
): PathsToTilesWithinTurn {
|
||||
origin: Vector2,
|
||||
unitMovement: Float,
|
||||
considerZoneOfControl: Boolean = true,
|
||||
tilesToIgnore: HashSet<Tile>? = null,
|
||||
passThroughCache: HashMap<Tile, Boolean> = HashMap(),
|
||||
movementCostCache: HashMap<Pair<Tile, Tile>, Float> = HashMap()
|
||||
): PathsToTilesWithinTurn {
|
||||
val distanceToTiles = PathsToTilesWithinTurn()
|
||||
|
||||
val currentUnitTile = unit.currentTile
|
||||
@ -65,9 +67,9 @@ class UnitMovement(val unit: MapUnit) {
|
||||
else -> {
|
||||
val key = Pair(tileToCheck, neighbor)
|
||||
val movementCost =
|
||||
movementCostCache.getOrPut(key) {
|
||||
MovementCost.getMovementCostBetweenAdjacentTiles(unit, tileToCheck, neighbor, considerZoneOfControl)
|
||||
}
|
||||
movementCostCache.getOrPut(key) {
|
||||
MovementCost.getMovementCostBetweenAdjacentTiles(unit, tileToCheck, neighbor, considerZoneOfControl)
|
||||
}
|
||||
distanceToTiles[tileToCheck]!!.totalDistance + movementCost
|
||||
}
|
||||
}
|
||||
@ -95,13 +97,15 @@ class UnitMovement(val unit: MapUnit) {
|
||||
|
||||
|
||||
data class MovementStepTotalCost(/** Turn 0 means the initial turn */ val turn: Int, val movementLeft: Float):Comparable<MovementStepTotalCost> {
|
||||
override operator fun compareTo(other: MovementStepTotalCost) =
|
||||
compareValuesBy(this, other, {it.turn}, {-it.movementLeft})
|
||||
override operator fun compareTo(other: MovementStepTotalCost): Int {
|
||||
if (turn != other.turn) return turn.compareTo(other.turn)
|
||||
return other.movementLeft.compareTo(movementLeft) // The higher the MovementLeft, the *lower* the turn cost
|
||||
}
|
||||
}
|
||||
|
||||
/** Problem and solution documented at https://yairm210.medium.com/multi-turn-pathfinding-7136bd0bdaf0 */
|
||||
fun getShortestPathNew(destination: Tile, considerZoneOfControl: Boolean = true,
|
||||
/** For allowing optional avoid of damaging tiles, tiles outside borders, etc */ shouldAvoidTile: (Tile) -> Boolean = {false},
|
||||
/** For allowing optional avoid of damaging tiles, tiles outside borders, etc */ shouldAvoidTile: ((Tile) -> Boolean)? = null,
|
||||
maxTurns: Int = 25,
|
||||
): List<MovementStep> {
|
||||
if (unit.cache.cannotMove) return listOf()
|
||||
@ -115,6 +119,7 @@ class UnitMovement(val unit: MapUnit) {
|
||||
return listOf(initialStep)
|
||||
}
|
||||
|
||||
|
||||
val tileToBestStep = HashMap<Tile, MovementStep>() // contains a map of "you can get from X to Y in that turn"
|
||||
tileToBestStep[startingTile] = initialStep
|
||||
|
||||
@ -122,7 +127,11 @@ class UnitMovement(val unit: MapUnit) {
|
||||
val tStep = tileToBestStep[t]!!
|
||||
val t2Step = tileToBestStep[t2]!!
|
||||
// This last comparitor is REQUIRED otherwise the tree will think that tiles the same distance away are the same and will throw the second one away!
|
||||
compareValuesBy(tStep, t2Step, {it.totalCost}, {it.tile.aerialDistanceTo(destination)}, {it.tile.position.hashCode()})
|
||||
val totalCostComparison = tStep.totalCost.compareTo(t2Step.totalCost)
|
||||
if (totalCostComparison != 0) return@TreeSet totalCostComparison
|
||||
val aerialDistanceComparison = t.aerialDistanceTo(destination).compareTo(t2.aerialDistanceTo(destination))
|
||||
if (aerialDistanceComparison != 0) return@TreeSet aerialDistanceComparison
|
||||
return@TreeSet t.position.hashCode().compareTo(t2.position.hashCode())
|
||||
}
|
||||
|
||||
tilesToCheck.add(startingTile)
|
||||
@ -138,13 +147,17 @@ class UnitMovement(val unit: MapUnit) {
|
||||
val currentTileStep = tileToBestStep[currentTileToCheck]!!
|
||||
|
||||
for (neighbor in currentTileToCheck.neighbors){
|
||||
if (shouldAvoidTileCache.getOrPut(neighbor){ shouldAvoidTile(neighbor) }) continue
|
||||
if (shouldAvoidTile != null && shouldAvoidTileCache.getOrPut(neighbor){
|
||||
shouldAvoidTile(neighbor)
|
||||
}) continue
|
||||
val currentBestStepToNeighbor = tileToBestStep[neighbor]
|
||||
// If this tile can't beat the current best then no point checking
|
||||
if (currentBestStepToNeighbor!=null && (currentBestStepToNeighbor.totalCost < currentTileStep.totalCost))
|
||||
continue
|
||||
|
||||
if (!canPassThroughCache.getOrPut(neighbor){ canPassThrough(neighbor) }) continue
|
||||
if (!canPassThroughCache.getOrPut(neighbor){
|
||||
canPassThrough(neighbor)
|
||||
}) continue
|
||||
|
||||
val movementBetweenTiles: Float = if (!neighbor.isExplored(unit.civ)) 1f // If we don't know then we just guess it to be 1.
|
||||
else movementCostCache.getOrPut(currentTileToCheck to neighbor) {
|
||||
@ -214,15 +227,6 @@ class UnitMovement(val unit: MapUnit) {
|
||||
* Returns an empty list if there's no way to get to the destination.
|
||||
*/
|
||||
fun getShortestPath(destination: Tile, avoidDamagingTerrain: Boolean = false): List<Tile> {
|
||||
if (UncivGame.Current.settings.experimentalMovement) {
|
||||
fun shouldAvoidEnemyTile(tile:Tile) = unit.isCivilian() && unit.isAutomated() && tile.isEnemyTerritory(unit.civ)
|
||||
if (avoidDamagingTerrain){
|
||||
val shortestPathWithoutDamagingTiles = getShortestPathNew(destination,
|
||||
shouldAvoidTile = { shouldAvoidEnemyTile(it) || unit.getDamageFromTerrain(it) > 0 })
|
||||
if (shortestPathWithoutDamagingTiles.isNotEmpty()) return shortestPathWithoutDamagingTiles.toBackwardsCompatiblePath()
|
||||
}
|
||||
return getShortestPathNew(destination, shouldAvoidTile = ::shouldAvoidEnemyTile).toBackwardsCompatiblePath()
|
||||
}
|
||||
if (unit.cache.cannotMove) return listOf()
|
||||
|
||||
// First try and find a path without damaging terrain
|
||||
@ -231,7 +235,7 @@ class UnitMovement(val unit: MapUnit) {
|
||||
if (damageFreePath.isNotEmpty()) return damageFreePath
|
||||
}
|
||||
if (unit.baseUnit.isWaterUnit()
|
||||
&& destination.neighbors.none { isUnknownTileWeShouldAssumeToBePassable(it) || it.isWater }) {
|
||||
&& destination.neighbors.none { isUnknownTileWeShouldAssumeToBePassable(it) || it.isWater }) {
|
||||
// edge case where this unit is a boat and all of the tiles around the destination are
|
||||
// explored and known to be land so we know a priori that no path exists
|
||||
pathfindingCache.setShortestPathCache(destination, listOf())
|
||||
@ -248,6 +252,19 @@ class UnitMovement(val unit: MapUnit) {
|
||||
return listOf(currentTile)
|
||||
}
|
||||
|
||||
if (UncivGame.Current.settings.experimentalMovement) {
|
||||
if (avoidDamagingTerrain){
|
||||
val shouldAvoidTile: (Tile) -> Boolean = if (unit.isCivilian() && unit.isAutomated())
|
||||
{{unit.getDamageFromTerrain(it) > 0 || it.isEnemyTerritory(unit.civ)}}
|
||||
else {{unit.getDamageFromTerrain(it) > 0}}
|
||||
return getShortestPathNew(destination,
|
||||
shouldAvoidTile = shouldAvoidTile).toBackwardsCompatiblePath()
|
||||
}
|
||||
val shouldAvoidTile :((Tile) -> Boolean)? = if (unit.isCivilian() && unit.isAutomated())
|
||||
{{it.isEnemyTerritory(unit.civ)}} else null
|
||||
return getShortestPathNew(destination, shouldAvoidTile = shouldAvoidTile).toBackwardsCompatiblePath()
|
||||
}
|
||||
|
||||
var tilesToCheck = listOf(currentTile)
|
||||
val movementTreeParents = HashMap<Tile, Tile?>() // contains a map of "you can get from X to Y in that turn"
|
||||
movementTreeParents[currentTile] = null
|
||||
@ -306,8 +323,8 @@ class UnitMovement(val unit: MapUnit) {
|
||||
} else {
|
||||
if (movementTreeParents.containsKey(reachableTile)) continue // We cannot be faster than anything existing...
|
||||
if (!isUnknownTileWeShouldAssumeToBePassable(reachableTile) &&
|
||||
!canMoveToCache.getOrPut(reachableTile) { canMoveTo(reachableTile) })
|
||||
// This is a tile that we can't actually enter - either an intermediary tile containing our unit, or an enemy unit/city
|
||||
!canMoveToCache.getOrPut(reachableTile) { canMoveTo(reachableTile) })
|
||||
// This is a tile that we can't actually enter - either an intermediary tile containing our unit, or an enemy unit/city
|
||||
continue
|
||||
movementTreeParents[reachableTile] = tileToCheck
|
||||
newTilesToCheck.add(reachableTile)
|
||||
@ -345,9 +362,13 @@ class UnitMovement(val unit: MapUnit) {
|
||||
val distanceToTiles = getDistanceToTiles()
|
||||
|
||||
// If the tile is far away, we need to build a path how to get there, and then take the first step
|
||||
if (!distanceToTiles.containsKey(finalDestination))
|
||||
return getShortestPath(finalDestination).firstOrNull()
|
||||
if (!distanceToTiles.containsKey(finalDestination)) {
|
||||
val shortestDestination = getShortestPath(finalDestination).firstOrNull()
|
||||
?: throw UnreachableDestinationException("$unit ${unit.currentTile} cannot reach $finalDestination")
|
||||
if (shortestDestination !in distanceToTiles)
|
||||
return distanceToTiles.keys.minBy { it.aerialDistanceTo(finalDestination) }
|
||||
return shortestDestination
|
||||
}
|
||||
|
||||
// we should be able to get there this turn
|
||||
if (canMoveTo(finalDestination))
|
||||
@ -360,7 +381,7 @@ class UnitMovement(val unit: MapUnit) {
|
||||
else -> destinationNeighbors
|
||||
.filter { distanceToTiles.containsKey(it) && canMoveTo(it) }
|
||||
.minByOrNull { distanceToTiles.getValue(it).totalDistance } // we can get a little closer
|
||||
?: currentTile // We can't get closer...
|
||||
?: currentTile // We can't get closer...
|
||||
}
|
||||
}
|
||||
|
||||
@ -431,11 +452,11 @@ class UnitMovement(val unit: MapUnit) {
|
||||
reachableTile.civilianUnit
|
||||
else
|
||||
reachableTile.militaryUnit
|
||||
) ?: return false
|
||||
) ?: return false
|
||||
val ourPosition = unit.getTile()
|
||||
if (otherUnit.owner != unit.owner
|
||||
|| otherUnit.cache.cannotMove // redundant, line below would cover it too
|
||||
|| !otherUnit.movement.canReachInCurrentTurn(ourPosition)) return false
|
||||
|| otherUnit.cache.cannotMove // redundant, line below would cover it too
|
||||
|| !otherUnit.movement.canReachInCurrentTurn(ourPosition)) return false
|
||||
|
||||
if (!canMoveTo(reachableTile, canSwap = true)) return false
|
||||
if (!otherUnit.movement.canMoveTo(ourPosition, canSwap = true)) return false
|
||||
@ -633,7 +654,7 @@ class UnitMovement(val unit: MapUnit) {
|
||||
destination.civilianUnit
|
||||
else
|
||||
destination.militaryUnit
|
||||
)?: return // The precondition guarantees that there is an eligible same-type unit at the destination
|
||||
)?: return // The precondition guarantees that there is an eligible same-type unit at the destination
|
||||
|
||||
val ourOldPosition = unit.getTile()
|
||||
val theirOldPosition = otherUnit.getTile()
|
||||
@ -696,7 +717,7 @@ class UnitMovement(val unit: MapUnit) {
|
||||
else
|
||||
// can skip checking for airUnit since not a city
|
||||
(tile.militaryUnit == null || (canSwap && tile.militaryUnit!!.owner == unit.owner))
|
||||
&& (tile.civilianUnit == null || tile.civilianUnit!!.owner == unit.owner || unit.civ.isAtWarWith(tile.civilianUnit!!.civ))
|
||||
&& (tile.civilianUnit == null || tile.civilianUnit!!.owner == unit.owner || unit.civ.isAtWarWith(tile.civilianUnit!!.civ))
|
||||
}
|
||||
|
||||
private fun canAirUnitMoveTo(tile: Tile, unit: MapUnit): Boolean {
|
||||
@ -741,14 +762,14 @@ class UnitMovement(val unit: MapUnit) {
|
||||
return false
|
||||
}
|
||||
if (tile.isLand
|
||||
&& unit.baseUnit.isWaterUnit()
|
||||
&& !tile.isCityCenter())
|
||||
&& unit.baseUnit.isWaterUnit()
|
||||
&& !tile.isCityCenter())
|
||||
return false
|
||||
|
||||
val unitSpecificAllowOcean: Boolean by lazy {
|
||||
unit.civ.tech.specificUnitsCanEnterOcean &&
|
||||
unit.civ.getMatchingUniques(UniqueType.UnitsMayEnterOcean)
|
||||
.any { unit.matchesFilter(it.params[0]) }
|
||||
unit.civ.getMatchingUniques(UniqueType.UnitsMayEnterOcean)
|
||||
.any { unit.matchesFilter(it.params[0]) }
|
||||
}
|
||||
if (tile.isWater && unit.baseUnit.isLandUnit() && !unit.cache.canMoveOnWater) {
|
||||
if (!unit.civ.tech.unitsCanEmbark) return false
|
||||
@ -773,7 +794,7 @@ class UnitMovement(val unit: MapUnit) {
|
||||
// Allow movement through unguarded, at-war Civilian Unit. Capture on the way
|
||||
// But not for Embarked Units capturing on Water
|
||||
if (!(unit.baseUnit.isLandUnit() && tile.isWater && !unit.cache.canMoveOnWater)
|
||||
&& firstUnit.isCivilian() && unit.civ.isAtWarWith(firstUnit.civ))
|
||||
&& firstUnit.isCivilian() && unit.civ.isAtWarWith(firstUnit.civ))
|
||||
return true
|
||||
// Cannot enter hostile tile with any unit in there
|
||||
if (unit.civ.isAtWarWith(firstUnit.civ))
|
||||
@ -785,10 +806,10 @@ class UnitMovement(val unit: MapUnit) {
|
||||
|
||||
|
||||
fun getDistanceToTiles(
|
||||
considerZoneOfControl: Boolean = true,
|
||||
passThroughCache: HashMap<Tile, Boolean> = HashMap(),
|
||||
movementCostCache: HashMap<Pair<Tile, Tile>, Float> = HashMap())
|
||||
: PathsToTilesWithinTurn {
|
||||
considerZoneOfControl: Boolean = true,
|
||||
passThroughCache: HashMap<Tile, Boolean> = HashMap(),
|
||||
movementCostCache: HashMap<Pair<Tile, Tile>, Float> = HashMap())
|
||||
: PathsToTilesWithinTurn {
|
||||
val cacheResults = pathfindingCache.getDistanceToTiles(considerZoneOfControl)
|
||||
if (cacheResults != null) {
|
||||
return cacheResults
|
||||
@ -819,7 +840,7 @@ class UnitMovement(val unit: MapUnit) {
|
||||
val newTilesToCheck = ArrayList<Tile>()
|
||||
for (currentTileToCheck in tilesToCheck) {
|
||||
val reachableTiles = currentTileToCheck.getTilesInDistance(unit.getRange())
|
||||
.filter { unit.movement.canMoveTo(it) }
|
||||
.filter { unit.movement.canMoveTo(it) }
|
||||
for (reachableTile in reachableTiles) {
|
||||
if (tilesReached.containsKey(reachableTile)) continue
|
||||
tilesReached[reachableTile] = currentTileToCheck
|
||||
|
Reference in New Issue
Block a user